簡易檢索 / 詳目顯示

研究生: 阮筱雯
Juan, Hsiao-Wen
論文名稱: 矽氧/矽複合材料應用於鋰離子電池負極之研究
SiOx/ Si composite as anode material for lithium ion batteries
指導教授: 黃肇瑞
Huang, Jow-Lay
共同指導教授: 張家欽
Chang, Chia-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 114
中文關鍵詞: 高能球磨法熱處理SiOx負極材料鋰離子電池
外文關鍵詞: High energy mechanical milling, CVD, SiOx/Si composite, anode material, lithium ion batteries
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著環保意識的抬頭,符合環境永續發展的綠色能源受到各國的重視,而電池是一透過電化學反應,將化學能轉化為電能使用,鋰離子電池具有較高的能量密度、較長的循環特性、體積輕薄短小、擁有較好的安全性、對環境較友善且有多種材料可以做為活性材等優點,受到各國的重視與研究,使鋰離子電池擁有更高的能量密度、可快充快放、兼顧安全性的提升與成本的降低,成為發展最大的目標。
    本研究使用SiOx,其成本低且容易取得,對環境也非常友善,但卻擁有初始庫倫效率低以及體積變化導致電池循環性及初始電容量不佳的問題,故使用高能球磨,透過簡單、低成本、可大量製造及再現性高的工藝對其進行改質,並添加Si粉,希望提升其初始庫倫效率,並利用熱處理使其呈現核殼結構,提供緩衝的空間增加其循環穩定性, 本研究成功製備出有效提升初始庫倫效率且電池循環壽命穩定性佳的 (3:1) SiOx /Si複合材料,且具有快速充放電的能力,具有最好的電化學性質。

    In this study, SiOx is choose to used, because it is low-cost and easy to obtain, and is also very friendly to the environment. However, it has the challge of poor initial coulombic efficiency and poor cyclability and low capacity . Therefore, high-energy ball milling is used. It is modified by a process with low cost, plenty production and high reproducibility, and Si powder is added to improve its initial Coulomb efficiency, and CVD is used to make the core-shell structure, providing a buffer space to increase its cycle stability. The research successfully prepared a (3:1) SiOx/Si composite material that can effectively improve the initial Coulomb efficiency 、 cycle life stability, and has the ability to charge and discharge rapidly , show the best electrochemical properties.

    中文摘要I Extended abstract II 致謝 XIII 總目錄 XVI 圖目錄 XIX 表目錄 XXIV 第一章 緒論1 1.1 前言1 1.2 研究動機與目的2 第二章 文獻回顧4 2.1 鋰離子電池發展與應用4 2.2 鋰離子電池組成與工作原理8 2.3 鋰離子電池負極材料介紹12 2.3.1 矽負極材料13 2.3.2 SiOx負極材料14 2.4 SiOx負極材料的問題24 2.4.1 活性材料崩解25 2.4.2 初始庫倫效率低27 2.5 負極材料的改善28 2.6 SiOx負極材料應用於鋰離子電池負極材料之研究近況30 2.6.1 歧化反應之SiOx 30 2.6.2 與其他材料複合32 2.6.3 製備多孔結構34 2.6.4 預鋰化36 2.6.5 其他39 第三章 研究方法與實驗步驟40 3.1 實驗材料40 3.2 實驗設備40 3.3 實驗設計與架構41 3.4 活性材料的製備42 3.5 材料鑑定分析43 3.5.1 X-ray繞射分析儀 (X-ray diffraction spectrometer : XRD)43 3.5.2 粒徑分布量測儀(Particle size distribution analyzer,PSD) 45 3.5.3 表面積及奈米孔徑分析儀(Surface Area and Porosimetric Analyzer , BET Analyzer) 47 3.5.4 高解析場發射掃描式電子顯微鏡 (High resolution field emission scanning electron microscopy: FE-SEM) 49 3.5.5 高解析穿透電子顯微鏡 (Ultrahigh Resolution Transmission Electron Microscope : HR-TEM)51 3.5.6 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis: ESCA)53 3.5.7 拉曼光譜分析儀 (Raman spectroscopy: Raman) 55 3.5.8 熱重分析儀 (Thermogravimetric analysis, TGA) 57 3.6 鈕扣型半電池組裝及性質測試58 3.6.1 極片製作59 3.6.2 半電池組裝60 3.6.3 半電池充放電測試62 3.6.4 交流阻抗測試63 3.6.5 循環壽命測試68 3.6.6 不同充放電速率測試70 3.6.7 循環伏安法71 第四章 結果與討論72 4.1 不同高能球磨時間對SiOx 負極之影響72 4.1.1 活性材料特性分析72 4.1.2 半電池電化學分析81 4.2 CVD熱處理對高能球磨SiOx負極材料之影響87 4.2.2 半電池電化學分析91 4.3 不同比例之SiOx/Si 複合材料94 4.3.1 活性材料特性分析94 4.3.2 半電池電化學分析101 第五章 結論108 參考文獻109

    [1] M. S. WHITTINGHAM, "Electrical Energy Storage and Intercalation Chemistry," Science, vol. 192, no. 4244, pp. 1126-1127, 1976.
    [2] K. M. P. C. J. P. J. W. J.B.Goodenough, "LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, no. 6, pp. 783-789, 1980.
    [3] J.-M. T. M. Armand, "Issues and challenges facing rechargeable lithium batteries," nature, vol. 414, no. 6861, pp. 359-367, 2001.
    [4] T. Randall, "Here’s How Electric Cars Will Cause the Next Oil Crisis," 2016.
    [5] "The battery decade: How energy storage could revolutionize industries in the next 10 years," 2019.
    [6] M. D. Bhatt and C. O'Dwyer, "Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes," Physical Chemistry Chemical Physics, vol. 17, no. 7, pp. 4799-4844, 2015.
    [7] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, no. 9, pp. 2565-75, Sep 2009.
    [8] N. Spinner, L. Zhang, and W. E. Mustain, "Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM," J. Mater. Chem. A, vol. 2, no. 6, pp. 1627-1630, 2014.
    [9] B. Liang, Y. Liu, and Y. Xu, "Silicon-based materials as high capacity anodes for next generation lithium ion batteries," Journal of Power Sources, vol. 267, pp. 469-490, 2014.
    [10] W.-J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 1, pp. 13-24, 2011.
    [11] L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn, Electrochem Solid St. 4 , A137-A140 , 2001.
    [12] M.N. Obrovac, L. Christensen, Electrochem Solid St. 7, A93-A96 , 2004.
    [13] H.R. Philipp, J. Non-Crystalline Solids 8 , p627-632,1972.
    [14] H. Philipp, J. Phys. Chem. Solids 32 ,p1935-1945,1971.
    [15] R. Dupree, D. Holland, D. Williams, Philos. Mag. B 50, L13-L18,1984.
    [16] R. Temkin, J. Non-Crystalline Solids 17,215-230,1975.
    [17] 劉欣, 趙海雷, 解晶瑩等. 鋰離子電池 SiOx(0<x≤2)基負極材料,化學進展, 27(4): 336–348,2015.
    [18] K. Schulmeister, W. Mader, J. Non-Crystalline Solids 320,p143-150,2003.
    [19] HOHL A, WIEDER T, VAN AKEN P A, et al. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO)[J]. J Non-Cryst Solids, 2003, 320(1-3): 255–280.
    [20] SCHULMEISTER K, MADER W. TEM investigation on the structure of amorphous silicon monoxide[J]. J Non-Cryst Solids, 320(1-3): 143–150,2003.
    [21] A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y. Tan, T. Fujita, M. Chen, Nat. Commun. 7 , 2016.
    [22] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Xie, O. Yamamoto, Solid State Ionics 152 , 125-129, 2002.
    [23] J.-H. Kim, C.-M. Park, H. Kim, Y.-J. Kim, H.-J. Sohn, J. Electroanal. Chem. 661, 245-249, 2011.
    [24] Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka, J. Electrochem Soc.151, A1572-A1575, 2004.
    [25] M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata, J. Electrochem Soc.152 , A2089-A2091, 2005.
    [26] Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, J. Electrochem Soc. 157, A26-A30, 2010.
    [27] K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, S. Shimosaki, J. Power Sources 329 , 462-472, 2016.
    [28] T. Kim, S. Park, S.M. Oh, J. Electrochem Soc. 154 , A1112-A1117, 2007.
    [29] H. Jung, B.C. Yeo, K.-R. Lee, S.S. Han, Phys. Chem. Chem. Phys. 18, 32078-32086, 2016.
    [30] H. Yamamura, K. Nobuhara, S. Nakanishi, H. Iba, S. Okada, J. Ceram. Soc. Jpn.119, 855-860, 2011.
    [31] YASUDA K, KASHITANI Y, KIZAKI S, et al. Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries[J]. J Power Sources, 2016, 329:462–472.
    [32] A. Veluchamy, C.-H. Doh, D.-H. Kim, J.-H. Lee, D.-J. Lee, K.-H. Ha, H.-M. Shin,B.-S. Jin, H.-S. Kim, S.-I. Moon, J. Power Sources 188 ,574-577,2009.
    [33] C.-H. Doh, H.-M. Shin, D.-H. Kim, Y.-C. Ha, B.-S. Jin, H.-S. Kim, S.-I. Moon,A. Veluchamy, Electrochem Commun. 10 ,233-237,2008.
    [34] S.C. Jung, H.-J. Kim, J.-H. Kim, Y.-K. Han, J. Phys. Chem. C 120 ,886-892,2016.
    [35] M. Obrovac, L. Krause, J. Electrochem Soc. 154 , A103-A108, 2007.
    [36] M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata, J. Electrochem Soc.152 , A2089-A2091,2005.
    [37] MIN K K, BO Y J, JIN S L, et al. Microstructures and electrochemical performances of nano-sized SiO x, (1.18≤ x ≤1.83) as an anode material for a lithium(Li)-ion battery[J]. J Power Sources, 2013, 244:115–121.
    [38] PHILIPPE B, DEDRYVÈRE R, ALLOUCHE J , et al. "Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. " Chem. Mater., 2017,24:1107-1115.
    [39] J. Yang , Y. Takeda , N. Imanishi , C. Capiglia , J.Y. Xie , O. Yamamoto , "SiOx-based anodes for secondary lithium batteries." Solid State Ionics 152– 153 , 2002.
    [40] WU Yongkang, FU Rusheng, LIU Zhaoping, XIA Yonggao, SHAO Guangjie, Development of Silicon Suboxide Anodes for Lithium-ion Batteries, JOURNAL OF THE CHINESE CERAMIC SOCIETY , 2018, 46(11): 1645–1652.
    [41] Tao Chen, Ji Wu , Qinglin Zhang, Xin Su, Recent advancement of SiOx based anodes for lithium-ion batteries, Journal of Power Sources 363, 126-144, 2017.
    [42] J. W. Choi and D. Aurbach, "Promise and reality of post-lithium-ion batteries with high energy densities," Nature Reviews Materials, Review Article vol. 1, p. 16013, 2016.
    [43] M. Ko, S. Chae, and J. Cho, "Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries," ChemElectroChem, vol. 2, no. 11, pp. 1645-1651, Nov 2015.
    [44] J.R. Szczech, S. Jin, Energ Environ. Sci. 4 ,56-72,2011.
    [45] P. Lu, C. Li, E.W. Schneider, S.J. Harris, J. Phys. Chem. C 118, 896-903,2014.
    [46] Z. Wang, Y. Fu, Z. Zhang, S. Yuan, K. Amine, V. Battaglia, G. Liu, J. Power
    Sources 260 ,57-61,2014.
    [47] J.K. Yoo, J. Kim, Y.S. Jung, K. Kang, Adv. Mater 24 ,5452-5456,2012.
    [48] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
    [49] MAMIYA M, KIKUCHI M, TAKEI H. Crystallization of fine silicon
    particles from silicon monoxide[J]. J Cryst Growth, 2002, 237–239:1909–1914.
    [50] PARK C M, CHOI W, HWA Y, et al. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. J Mater Chem, 2010, 20(23):4854–4860.
    [51] M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, Adv. Mater 25 , 4966-4984, 2013.
    [52] U. Kasavajjula, C.S. Wang, A.J. Appleby, J. Power Sources 163 1003-1039, 2007.
    [53] J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen, J. Sun, Acs Appl. Mater Inter 8 ,30239-30247,2016.
    [54] I. Choi, M.J. Lee, S.M. Oh, J.J. Kim, Electrochim Acta 85 ,369-376,2012.
    [55] W. Wu, J. Shi, Y. Liang, F. Liu, Y. Peng, H. Yang, Phys. Chem. Chem. Phys. 17,13451-13456,2015.
    [56] Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, "Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes," Advanced Energy Materials, vol. 7, no. 3, 2017.
    [57] YANG Z, XIA Y, JI J, et al. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries[J]. Rsc Adv, 2016, 6(15): 12107–12113.
    [58] YANG Y, SHI E, LI P, et al. A compressible mesoporous SiO2 sponge
    supported by a carbon nanotube network.[J]. Nanoscale, 2014, 6(7): 3585–3592.
    [59] BACK C K, KIM T J, CHOI N S. Activated natural porous silicate for a highly promising SiOx nanostructure finely impregnated with carbon nanofibers as a high performance anode material for lithium-ion batteries[J]. J Mater Chem A, 2014, 2(33): 13648–13654.
    [60] XU Q, SUN J K, YIN Y X, et al. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes[J]. Adv Funct Mater, 2017, 28(8): 1705235.
    [61] LEE J I, PARK S. High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching[J]. Nano Energy, 2013,2(1): 146–152.
    [62] YU B C, HWA Y, KIM J H, et al. A new approach to synthesis of porous SiOx, anode for li-ion batteries via chemical etching of Si crystallites[J]. Electrochim Acta, 2014, 117(4): 426–430.
    [63] X. Yang, Z. Wen, X. Xu, B. Lin, S. Huang, Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries,J. Power Sources 164 ,p880-884,2007.
    [64] KULOVA T L, SKUNDIN A M. Elimination of irreversible capacity of
    amorphous silicon: direct contact of the silicon and lithium metal[J]. Rus J Electrochem, 2010, 46(4): 470–475.
    [65] Y. Gao, J.L. Burba III, in, Google Patents, 2004.
    [66] C. Jarvis, M. Lain, Y. Gao, M. Yakovleva, A lithium ion cell containing a non-lithiated cathode, J. Power Sources 146 ,p331-334,2005.
    [67] H. Zhao, Z. Wang, P. Lu, M. Jiang, F. Shi, X. Song, Z. Zheng, X. Zhou, Y. Fu, G. Abdelbast, X. Xiao, Z. Liu, V.S. Battaglia, K. Zaghib, G. Liu, Nano Lett. 14 , 6704-6710,2014.
    [68] KIM H J, CHOI S, LEE S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Lett, 2016, 16(1): 282–288.
    [69] ZHAO J, SUN J, PEI A, et al. A general prelithiation approach for group IV elements and corresponding oxides[J]. Energy Storage Mater, 2018, 10: 275–281.
    [70] Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Rev. 8, 409–427, 2016.
    [71] S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., vol. 60, no. 2, pp. 309-319 , 1938.
    [72] Robinson, J. W.; Frame, E. M. S.; Frame II, G. M. (2005), Undergraduate Instrumental Analysis (6th ed.). CRC Press. p880-897.
    [73] V. Prakash Reddy, M. Blanco, and R. Bugga, "Boron-based anion receptors in lithium-ion and metal-air batteries," Journal of Power Sources, vol. 247, pp. 813-820, 2014.
    [74] E. Barsoukov, "Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy," Solid State Ionics, vol. 161, no. 1-2, pp. 19-29, 2003,
    [75] Q.-C. Zhuang, T. Wei, L.-L. Du, Y.-L. Cui, L. Fang, and S.-G. Sun, "An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4," 114, pp. 8614-8621, 2010.
    [76] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy, Theory Experiment and Applications: John Wiley & Sons, Inc., Hoboken, New Jersey., 2005. [Online]. Available
    [77] L. Qian, J.-L. Lan, M. Xue, Y. Yu, and X. Yang, "Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability," RSC Advances, vol. 7, no. 58, pp. 36697-36704, 2017.
    [78] B.-C. Yu, Y. Hwa, J.-H. Kim, and H.-J. Sohn, "A New Approach to Synthesis of Porous SiOx Anode for Li-ion Batteries via Chemical Etching of Si Crystallites," Electrochimica Acta, vol. 117, pp. 426-430, 2014.

    下載圖示 校內:2024-10-26公開
    校外:2024-10-26公開
    QR CODE