| 研究生: |
黃紫婷 Huang, Zih-Ting |
|---|---|
| 論文名稱: |
探討ZNRF1、UCHL1、Oleuropein對泛素-蛋白酶體及粒線體功能的影響 Effects of ZNRF1, UCHL1 and Oleuropein on Ubiquitin-Proteasome System and Mitochondrial Functions |
| 指導教授: |
何盧勳
Her, Lu-Shiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 亨廷頓蛋白 、泛素-蛋白酶體降解系統 、UCHL1 、ZNRF1 |
| 外文關鍵詞: | Huntingtin, Ubiquitin-Proteasome System, UCHL1, ZNRF1 |
| 相關次數: | 點閱:156 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亨廷頓舞蹈症(Huntington's disease)為一顯性遺傳神經退化疾病,造成亨廷頓舞蹈症的原因是在huntingtin (Htt)基因exon1中的CAG三核苷酸重複序列異常擴增,促使錯誤摺疊的亨廷頓蛋白形成聚集體並堆積於神經細胞中。細胞中主要有兩種清除錯誤摺疊蛋白的機制,分別是泛素-蛋白酶體降解系統(Ubiquitin-Proteasome System, UPS)及細胞自噬(Autophagy)。已有研究指出突變型亨廷頓蛋白會造成泛素-蛋白酶體降解系統功能失常致使聚集體數目增加,而泛素-蛋白酶體降解系統的正常運作需要靠許多蛋白質來共同調控。因此我們想探討在野生型STHdh Q7/Q7及突變型STHdh Q111/Q111細胞中與泛素-蛋白酶體降解系統相關的調控蛋白表現量是否有不同,結果發現UCHL1、ZNRF1的表現量在STHdh Q111/Q111細胞中都有明顯下降。UCHL1與ZNRF1分別為去泛素酶及E3泛素連接酶,所以我們進一步研究它們對UPS功能的影響,結果顯示UCHL1並不會影響泛素-蛋白酶體降解系統的功能。但在STHdh Q7/Q7細胞ZNRF1 knockdown後,泛素-蛋白酶體降解系統的降解功能有顯著提升。因為ZNRF1本身為E3泛素連接酶,可把蛋白質送至泛素-蛋白酶體降解系統進行降解,證明ZNRF1的下降可能會使某些可提高泛素-蛋白酶體降解系統降解功能的蛋白表現量上升。UCHL1與ZNRF1雖為去泛素酶及E3泛素連接酶,但先前有研究指出:細胞中UCHL1表現量降低時會使麩胱甘肽(Glutathione, GSH)在細胞中的含量也減少,進而導致氧化壓力使粒線體功能異常;此外也已知與ZNRF1同為E3泛素連接酶的Parkin會調控粒線體自噬(Mitophagy),Parkin表現異常時會導致粒線體功能受損。因此我們想更進一步探討UCHL1與ZNRF1是否對粒線體功能有所影響。結果發現當ZNRF1在STHdh Q7/Q7細胞中的表現量降低時,會使粒線體的型態發生改變,進一步以西方墨點法觀察發現ZNRF1可能是經由增加DRP1的表現量及降低Mfn1的表現量所導致的。DRP1為粒線體外膜上的趨分裂蛋白,可使粒線體型態趨向分裂;Mfn1為粒線體外膜上的趨融合蛋白,可使粒線體型態趨向融合。已知造成過多麩醯胺酸疾病的主要原因為突變的多麩醯胺酸蛋白會使泛素-蛋白酶體降解系統功能失常導致聚集體不斷的堆積在細胞中。前人研究指出:Oleuropein可以增強蛋白酶體的活性,我們在實驗中也證實Oleuropein確實可提高細胞內泛素-蛋白酶體降解系統降解功能的效率,但並不是藉由增加三磷酸線苷(ATP)在細胞中的濃度以便供給更多的能量給泛素-蛋白酶體降解系統這一條路徑,所以未來我們還可以進一步探討Oleuropein究竟是藉由哪一條機制來調控蛋白酶體的活性。
UPS is highly regulated process usually involving many proteins. The presence of mutant huntingtin impairs UPS and leads to aggregates formation. This study attempted to study the UPS-related regulatory proteins in wild-type STHdhQ7/Q7and mutant STHdhQ111/Q111 striatal cells. Western blot assays showed that there is a significant decrease in levels of UCHL1 and ZNRF1 in STHdhQ111/Q111 cells. UCHL1 and ZNRF1 are deubiquitinating enzyme and E3 ubiquitin-protein ligase, respectively. Our results indicated that UCHL1 did not affect UPS functions. On the other hand, depletion of ZNRF1 in STHdhQ7/Q7 cells showed an increase in the UPS degradation activity. Earlier study found that reduced UCHL1 level in cells lowers the level of glutathione (GSH), which leads to increased oxidative stress followed by mitochondria dysfunction. Moreover, it is discovered that an abnormal expression of parkin, an E3 ubiquitin-protein ligase similar to ZNRF1, results in mitochondria dysfunction. Therefore, our study also examined the effects of UCHL1 and ZNRF1 on mitochondrial function. It is found that mitochondria morphology changes when ZNRF1 is down-regulated in STHdhQ7/Q7 cells. DRP1 is a pro-fission protein inducing mitochondrial fragmentation whereas Mfn1 is a mitochondrial fusion-promoting protein. Western blot assays showed that there is an increase in DRP1 level and a decrease in Mfn1 level after depletion of ZNRF1. Evidences indicated that poly-Q diseases are due to the mutated poly-Q chains impairs UPS and leads to aggregates accumulation. As previous study has shown that Oleuropein is able to enhance proteasomal activities, we also found that Oleuropein has improves on the UPS function. Increment of cellular ATP concentration however, is not the factor that provides more energy for proteasome pathway to take place.
Aguileta, M.A., J. Korac, T.M. Durcan, J.-F. Trempe, M. Haber, K. Gehring, S. Elsasser, O. Waidmann, E.A. Fon, and K. Husnjak. 2015. The E3 Ubiquitin Ligase Parkin Is Recruited to the 26 S Proteasome via the Proteasomal Ubiquitin Receptor Rpn13. J. Biol. Chem. . 290:7492-7505.
Alavi, M.V., and N. Fuhrmann. 2013. Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics. Mol Neurodegener. 8:32.
Amerik, A.Y., and M. Hochstrasser. 2004. Mechanism and function of deubiquitinating enzymes. Biochimica et biophysica acta. 1695:189-207.
Andrew, S.E., Y.P. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, E. Starr, F. Squitieri, B. Lin, M.A. Kalchman, and et al. 1993. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature genetics. 4:398-403.
Araki, T., and J. Milbrandt. 2003. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23:9385-9394.
Ardley, H.C., and P.A. Robinson. 2004. The role of ubiquitin-protein ligases in neurodegenerative disease. Neuro-degenerative diseases. 1:71-87.
Arrasate, M., S. Mitra, E.S. Schweitzer, M.R. Segal, and S. Finkbeiner. 2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 431:805-810.
Bence, N.F., R.M. Sampat, and R.R. Kopito. 2001. Impairment of the ubiquitin-proteasome system by protein aggregation. Science (New York, N.Y.). 292:1552-1555.
Bennett, E.J., N.F. Bence, R. Jayakumar, and R.R. Kopito. 2005. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Molecular cell. 17:351-365.
Caglayan, K., B. Güngör, H. Cinar, B. Avci, S. Gur, and N. Arslan. 2014. Effects of oleuropein on serum inflammatory cytokines and histopathological changes in rats with pancreatitis. Advances in clinical and experimental medicine: official organ Wroclaw Medical University. 24:213-218.
Cattaneo, E., D. Rigamonti, D. Goffredo, C. Zuccato, F. Squitieri, and S. Sipione. 2001. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends in neurosciences. 24:182-188.
Cha, J.H. 2000. Transcriptional dysregulation in Huntington's disease. Trends in neurosciences. 23:387-392.
Chiong, M., B. Cartes-Saavedra, I. Norambuena-Soto, D. Mondaca-Ruff, P.E. Morales, M. Garcia-Miguel, and R. Mellado. 2014. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front Cell Dev Biol. 2:72.
Cornett, J., F. Cao, C.E. Wang, C.A. Ross, G.P. Bates, S.H. Li, and X.J. Li. 2005. Polyglutamine expansion of huntingtin impairs its nuclear export. Nature genetics. 37:198-204.
Coulombe, J., P. Gamage, M.T. Gray, M. Zhang, M.Y. Tang, J. Woulfe, M.J. Saffrey, and D.A. Gray. 2014. Loss of UCHL1 promotes age-related degenerative changes in the enteric nervous system. Front Aging Neurosci. 6:129.
Cummings, C.J., and H.Y. Zoghbi. 2000. Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet. 1:281-328.
Damiano, M., L. Galvan, N. Deglon, and E. Brouillet. 2010. Mitochondria in Huntington's disease. Biochimica et biophysica acta. 1802:52-61.
Davies, S.W., M. Turmaine, B.A. Cozens, M. DiFiglia, A.H. Sharp, C.A. Ross, E. Scherzinger, E.E. Wanker, L. Mangiarini, and G.P. Bates. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 90:537-548.
Day, I.N., and R.J. Thompson. 2010. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 90:327-362.
Dennissen, F.J., N. Kholod, and F.W. van Leeuwen. 2012. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Progress in neurobiology. 96:190-207.
Difiglia, M., E. Sapp, K. Chase, C. Schwarz, A. Meloni, C. Young, E. Martin, J.P. Vonsattel, R. Carraway, S.A. Reeves, F.M. Boyce, and N. Aronin. 1995. Huntingtin Is a Cytoplasmic Protein Associated with Vesicles in Human and Rat-Brain Neurons. Neuron. 14:1075-1081.
DiFiglia, M., E. Sapp, K.O. Chase, S.W. Davies, G.P. Bates, J.P. Vonsattel, and N. Aronin. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 277:1990-1993.
Gu, Y.Y., M. Yang, M. Zhao, Q. Luo, L. Yang, H. Peng, J. Wang, S.K. Huang, Z.X. Zheng, X.H. Yuan, P. Liu, and C.Z. Huang. 2015. The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine:1-9.
Handschin, C., and B.M. Spiegelman. 2006. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 27:728-735.
Harjes, P., and E.E. Wanker. 2003. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci. 28:425-433.
Hegde, A.N. 2010. The ubiquitin-proteasome pathway and synaptic plasticity. Learning & memory (Cold Spring Harbor, N.Y.). 17:314-327.
Heo, J.M., and J. Rutter. 2011. Ubiquitin-dependent mitochondrial protein degradation. Int J Biochem Cell Biol. 43:1422-1426.
Hoxhaj, G., A. Najafov, R. Toth, D.G. Campbell, A.R. Prescott, and C. MacKintosh. 2012. ZNRF2 is released from membranes by growth factors and, together with ZNRF1, regulates the Na+/K(+)ATPase. Journal of Cell Science. 125:4662-4675.
Hughes, R.E., and J.M. Olson. 2001. Therapeutic opportunities in polyglutamine disease. Nature Medicine. 7:419-423.
James, D.I., P.A. Parone, Y. Mattenberger, and J.C. Martinou. 2003. hFis1, a novel component of the mammalian mitochondrial fission machinery. The Journal of biological chemistry. 278:36373-36379.
Jin, Y.N., and G.V.W. Johnson. 2010. The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. Journal of Bioenergetics and Biomembranes. 42:199-205.
Katsiki, M., N. Chondrogianni, I. Chinou, A.J. Rivett, and E.S. Gonos. 2007. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res. 10:157-172.
Knott, A.B., G. Perkins, R. Schwarzenbacher, and E. Bossy-Wetzel. 2008. Mitochondrial fragmentation in neurodegeneration. Nature reviews. Neuroscience. 9:505-518.
Kumar, A., S.K. Singh, V. Kumar, D. Kumar, S. Agarwal, and M.K. Rana. 2015. Huntington's disease: An update of therapeutic strategies. Gene. 556:91-97.
Larsen, C.N., B.A. Krantz, and K.D. Wilkinson. 1998. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry. 37:3358-3368.
Li, J., K.M. Horak, H. Su, A. Sanbe, J. Robbins, and X. Wang. 2011. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J Clin Invest. 121:3689-3700.
Livnat-Levanon, N., and M.H. Glickman. 2011. Ubiquitin–proteasome system and mitochondria—reciprocity. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 1809:80-87.
MacDonald, M.E., C.M. Ambrose, M.P. Duyao, R.H. Myers, C. Lin, L. Srinidhi, G. Barnes, S.A. Taylor, M. James, N. Groot, H. MacFarlane, B. Jenkins, M.A. Anderson, N.S. Wexler, J.F. Gusella, G.P. Bates, S. Baxendale, H. Hummerich, S. Kirby, M. North, S. Youngman, R. Mott, G. Zehetner, Z. Sedlacek, A. Poustka, A.-M. Frischauf, H. Lehrach, A.J. Buckler, D. Church, L. Doucette-Stamm, M.C. O'Donovan, L. Riba-Ramirez, M. Shah, V.P. Stanton, S.A. Strobel, K.M. Draths, J.L. Wales, P. Dervan, D.E. Housman, M. Altherr, R. Shiang, L. Thompson, T. Fielder, J.J. Wasmuth, D. Tagle, J. Valdes, L. Elmer, M. Allard, L. Castilla, M. Swaroop, K. Blanchard, F.S. Collins, R. Snell, T. Holloway, K. Gillespie, N. Datson, D. Shaw, and P.S. Harper. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72:971-983.
Margineantu, D.H., C.B. Emerson, D. Diaz, and D.M. Hockenbery. 2007. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS One. 2:e1066.
Martı́n-Aparicio, E., A. Yamamoto, F. Hernández, R. Hen, J. Avila, and J.J. Lucas. 2001. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. The Journal of Neuroscience. 21:8772-8781.
McInnes, J. 2013. Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration. Transl Neurodegener. 2:12.
Michalik, A., and C. Van Broeckhoven. 2003. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet. 12 Spec No 2:R173-186.
Millecamps, S., and J.P. Julien. 2013. Axonal transport deficits and neurodegenerative diseases. Nature reviews. Neuroscience. 14:161-176.
Narendra, D., A. Tanaka, D.F. Suen, and R.J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183:795-803.
Pickart, C.M., and M.J. Eddins. 2004. Ubiquitin: structures, functions, mechanisms. Biochimica et biophysica acta. 1695:55-72.
Pickrell, A.M., and R.J. Youle. 2015. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 85:257-273.
Qin, Z.H., and Z.L. Gu. 2004. Huntingtin processing in pathogenesis of Huntington disease. Acta Pharmacol Sin. 25:1243-1249.
Shao, J., and M.I. Diamond. 2007. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet. 16 Spec No. 2:R115-123.
Shen, H., M. Sikorska, J. Leblanc, P.R. Walker, and Q.Y. Liu. 2006. Oxidative stress regulated expression of ubiquitin Carboxyl-terminal Hydrolase-L1: role in cell survival. Apoptosis. 11:1049-1059.
Shirendeb, U.P., M.J. Calkins, M. Manczak, V. Anekonda, B. Dufour, J.L. McBride, P. Mao, and P.H. Reddy. 2012. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Hum Mol Genet. 21:406-420.
Shoshan-Barmatz, V., V. De Pinto, M. Zweckstetter, Z. Raviv, N. Keinan, and N. Arbel. 2010. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med. 31:227-285.
Solans, A., A. Zambrano, M. Rodriguez, and A. Barrientos. 2006. Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet. 15:3063-3081.
Song, W., J. Chen, A. Petrilli, G. Liot, E. Klinglmayr, Y. Zhou, P. Poquiz, J. Tjong, M.A. Pouladi, M.R. Hayden, E. Masliah, M. Ellisman, I. Rouiller, R. Schwarzenbacher, B. Bossy, G. Perkins, and E. Bossy-Wetzel. 2011. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med. 17:377-382.
Tatsuta, T., K. Model, and T. Langer. 2005. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell. 16:248-259.
Thompson, L.M. 2008. Neurodegeneration: a question of balance. Nature. 452:707-708.
Trausch‐Azar, J.S., M. Abed, A. Orian, and A.L. Schwartz. 2015. Isoform‐Specific SCFFbw7 Ubiquitination Mediates Differential Regulation of PGC‐1α. Journal of cellular physiology. 230:842-852.
Trettel, F., D. Rigamonti, P. Hilditch-Maguire, V.C. Wheeler, A.H. Sharp, F. Persichetti, E. Cattaneo, and M.E. MacDonald. 2000. Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells. Human molecular genetics. 9:2799-2809.
Turcu, F.E.R., K.H. Ventii, and K.D. Wilkinson. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual review of biochemistry. 78:363.
Vali, S., R. Mythri, B. Jagatha, J. Padiadpu, K. Ramanujan, J. Andersen, F. Gorin, and M. Bharath. 2007. Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience. 149:917-930.
Waelter, S., A. Boeddrich, R. Lurz, E. Scherzinger, G. Lueder, H. Lehrach, and E.E. Wanker. 2001. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Molecular biology of the cell. 12:1393-1407.
Wakatsuki, S., F. Saitoh, and T. Araki. 2011. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol. 13:1415-1423.
Wang, H., P.J. Lim, M. Karbowski, and M.J. Monteiro. 2009. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet. 18:737-752.
Wong, B.K., D.E. Ehrnhoefer, R.K. Graham, D.D. Martin, S. Ladha, V. Uribe, L.M. Stanek, S. Franciosi, X. Qiu, and Y. Deng. 2015. Partial rescue of some features of Huntington disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiology of disease. 76:24-36.
Xia, J., D.H. Lee, J. Taylor, M. Vandelft, and R. Truant. 2003. Huntingtin contains a highly conserved nuclear export signal. Human molecular genetics. 12:1393-1403.
Yamamoto, A., J.J. Lucas, and R. Hen. 2000. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell. 101:57-66.
Yoshida, K., M. Watanabe, and S. Hatakeyama. 2009. ZNRF1 interacts with tubulin and regulates cell morphogenesis. Biochem Biophys Res Commun. 389:506-511.