簡易檢索 / 詳目顯示

研究生: 林華奎
Lin, Hua-kuei
論文名稱: 微波單石混頻器應用於毫米波段無線通信之研製
Implementation of Microwave Monolithic Mixers for Millimeter Wave Wireless Communication
指導教授: 王永和
Wang, Yeong-her
曾永華
Tzeng, Yon-hua
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 集總元件功率結合器雙平衡混頻器180°混成器螺旋巴倫TFMS次諧波混頻器
外文關鍵詞: Doubly balanced, 180° hybrid, Spiral balun, TFMS, sub-harmonic mixer, power combiner, lumped element
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文WIN 0.15μm PHEMT 製程,製作微小化Ku-Ka頻段PHEMT雙平衡混頻器,利用藍吉耦合器與±45°移相器所組成的180°耦合器,可讓RF與LO同端進入,除了改良傳統RF與LO端必須個別使用Balun電路,並且使混頻器可同時操作於昇頻與降頻。IF端則設計了一組微小化C-band之螺旋巴倫電路,除了使整體電路面積縮小外,在此端可當作混頻器操於作昇頻之輸入端。電路特性 conversion loss量測結果在10-44GHz有11-14dB,LO-IF隔離度在16-44GHz有27-50dB的表現。P1dB在14dBm。
    第二部份則是利用TSMC 0.18μm 1P6M CMOS 製程所設計之應用TFMS之超寬頻CMOS次諧波混頻器。利用CMOS多層金屬的製程下,設計一個以TFMS架構的Wilkinson 功率結合器,利用TFMS的被動寬頻特性,並且改善傳統次諧波混頻器必須在RF端使用的 開路殘段。混頻器可操作在10~40GHz範圍內,其conversion loss 皆在16.5~17.6dB左右,LO -IF與RF -IF 隔離度皆大於35dB。
    第三部份則設計一個利用新的電流像位關係的90° Ka band雙平衡環形混頻器,相較於傳統的環形混頻器,利用新的電流像位關係可使RF與LO端的balun電路得以縮小。模擬結果conversion loss 在Ka頻段內為8~15dB,IF頻寬從1~8GHz中有11dB以上,P1dB點則為10dBm。

    Mixers play an important role in communication systems. In this work we present mixers with different architectures, using pseudomorphic high electron mobility transistors (PHEMT) monolithic IC technology and CMOS processes. The first part of this thesis presents a Ku-Ka band MMIC doubly-balanced diode ring mixer with a compact 180° hybrid, designed with a 0.15μm PHEMT process. A Lange coupler with ±45° lumped elements phase shifter was used to replace the LO and RF balun used in conventional configuration of ring mixer. A compact, C-band spiral balun, used in the IF terminal, not only reduced the mixer size, but also caused the input of an RF signal in an up-converter. From the measured results, the mixer exhibited an 11-14 dB conversion loss, a 27-50 dB high LO-to-IF isolation over a 16-44 GHz RF/LO bandwidth and a 1 dB compression power of 14 dBm for both up-and-down converter applications.

    The second part presents a 10-40GHz ultra-broadband, sub-harmonic mixer with a TFMS (Thin film Microstrip), by using a TSMC 1P6M CMOS multilayer structure to realize the TFMS broadband Wilkinson power combiner for RF and LO signals. From the measured results, the mixer demonstrated a broadband conversion loss of about 15.6-17.6dB in a 10-40GHz band, which was larger than a 30dB LO-to-IF, RF-IF isolation in the same bandwidth.

    The third part presents a 90° double-balanced mixer design. Designed with lumped elements, the 90° hybrid was used in the RF and LO ports. From the simulation results, the mixer exhibited an 8-15dB conversion loss in a Ka band and a 1-8GHz IF bandwidth and 1 dB compression power point of 10dBm.

    第一章 緒..................................................1 1.1 研究背景..............................................1 1.2 論文綱要..............................................2 第二章 微波接收機架構簡介....................................4 2.1 接收機架構簡介........................................4 2.1.1 外差式 (Heterodyne)架構接收機..................6 2.1.2 直接降頻 (Homodyne)架構接收機..................8 2.2 混頻器介紹...........................................11 2.2.1 主動式混頻器..................................11 2.2.2 被動式混頻器..................................13 2.3 混頻器基本參數.......................................19 2.3.1 轉換增益/損耗(Conversion Gain/Loss) ..........19 2.3.2 隔離度(Isolation) ............................19 2.3.3 1dB 增益壓縮點(1dB compression point; P1dB) ..21 2.3.4 三階截斷點(Third order intercept point; IP3)..22 2.3.5 雜訊指數(Noise Figure; NF) ...................24 第三章 微小化K-Ka頻段PHEMT雙平衡混頻器......................27 3.1 研究動機.............................................27 3.2 電路架構與設計原理........... .......................27 3.2.1 藍吉耦合器設計................................30 3.2.2 180°Hybrid設計................................33 3.2.3 C-band Spiral 設計............................36 3.2.4 設計流程圖....................................38 3.3 混頻器模擬結果.......................................39 3.4 電路佈局.............................................43 3.5 晶片測試.............................................44 3.6 結果討論.............................................48 第四章 超寬頻10-40GHz CMOS次諧波混頻器......................50 4.1 前言.................................................50 4.2 電路架構與設計原理...................................51 4.2.1 反向二極體對次諧波混頻器.....................52 4.2.2 TFMS架構介紹.................................55 4.2.3 Wilkinson功率分配器..........................57 4.3 模擬結果.............................................60 4.4 電路佈局.............................................63 4.5 晶片測試.............................................64 4.6 結果討論.............................................67 第五章 90度耦合器之Ka頻段環形混頻器.........................69 5.1 前言.................................................69 5.2 電路架構與設計原理...................................69 5.2.1 混頻器電路架構分析............................69 5.2.2 90度耦合器設計................................72 5.3 模擬結果.............................................74 5.4 結果討論.............................................78 第六章 結論.................................................79 參考文獻......................................................81 作者簡介

    [1] J.C. Maxwell, A Treatise on Electricity and Magnetism, Dover, NY., 1954
    [2] IEEE Std 802.11a/D7.0-1999, “Part11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification:High-speed Physical Layer in the 5GHz Band.”
    [3] B. Razavi, RF Microelectronics, Upper Saddle River, NJ :Prentice Hall, 1998.
    [4] D. M. Pozar, Microwave and RF design of wireless systems, New York :John Wiley, 2001.
    [5] A. Boveda, F. Orgitoso, and J. I. Alonso, “A 0.7-3GHz GaAs QPSK/QAM direct modulator,” IEEE J. Solid-State Circuits, vol. 28, pp. 1340-1349, 1993.
    [6] B. Razavi, “Design considerations for direct-conversion receivers,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol 44 Issue: 6, Jun. 1997.
    [7] A. R. Behzad, et al., “A 5GHz direction-conversion CMOS transceiver utilizing automatic frequency control for the IEEE 802.11a wireless LAN standard,” IEEE J.Solid-State Circuits, vol. 38, pp. 2209-2220, Dec. 2003.
    [8] T. Melly, A. S. Porret, C. C. Ezn, and E. A. Vittoz, “An analysis of flicker noise rejection in low-power and low-vlotage CMOS mixers,” IEEE Journal of Solid-State Citcuits, vol. 36, no.1, pp.102-109. Jan. 2001.
    [9] S. A. Mass, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
    [10] B. Razavi, Design of analog CMOS integrated circuits, Boston, MA: McGraw-Hill, 2001.
    [11] S. A. Maas, F. M. Yamada, A. K. Oki, N. Matovelle, and C. Hochuli, “An 18-40GHz monolithic ring mixer,” in IEEE WIC Symp. Dig., pp. 29-32. 1998.

    [12] S. A. Maas and K.W Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT-41, no. 12, pp. 2330-2335, Dec. 1993.
    [13] S. Gunnarsson, K. Yhland, and H. Zirath, “pHEMT and mHEMT ultra wideband millimeterwave balanced resistive mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 1141-1144, Jun. 2004.
    [14] K.W. Kobayashi, R. Kasody, A.K. Oki, S. Dow, B. Allen, and D.C. Streit, “K-Band double balanced mixer using GaAs HBT THz Schottky diodes,” in IEEE MTT-S Int. Microw. Symp.Dig, 1994, pp. 1163- 1166.
    [15] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424-426, Oct. 2000.
    [16] J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microw. Theory Tech., vol. 20, no 11, pp.777-779, Nov. 1972.
    [17] D. D. Paolino, “Design equations for interdigital direction coupler,” Microwaves, vol. 15, no.5, pp. 34-38, May. 1976.
    [18] R. Waugh and D. LaCombe, ”Unfolding the Lange Coupler,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, no. 11, pp.777-779, Nov. 1972.
    [19] C. W. Tang, and C. Y. Chang, “A semi-lumped Balun fabricated by low temperature co-fired ceramic,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, pp. 2201-2204, 2002.
    [20] C. W. Tang, J. W. Sheen, and C. Y. Chang, “Chip-Type LTCC–MLC Baluns Using the Stepped Impedance Method,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, Dec. 2001.

    [21] C. J. Trantanella, “Ultra-small MMIC mixers for K- and Ka-band communications,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 647-650, 2000.
    [22] FCC [Online]. Available: http://www.fcc.gov, 2007.
    [23] M. Cohn, J. E. Degenford, and B. Newman, “Harmonic Mixing with an Antiparallel Diode Pair,” IEEE Trans. Microw. Theory Tech., vol 23, pp.667-673, Aug 1975.
    [24] T. P. W and H. Wang,” A 71–80 GHz Amplifier Using 0.13μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.9, pp.685-687 Sep. 2007.
    [25] Y. H. Cho, M. D. Tsai, H. Y. Chang, C. C. Chang, H. Wang, ”A Low Phase Noise 52-GHz Push-Push VCO in 0.18-pm Bulk CMOS Technologies,” IEEE Radio Frequency Integrated Circuits Symposium, pp.131-134, Jun. 2005.
    [26] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-Wave CMOS Circuit Design,” IEEE Trans. Microwave Theory Tech.,vol. 53, no.2, pp.472-477, Feb. 2005.
    [27] S. B. Cohn,” A Class of Broadband Three-Port TEM-Mode Hybrids,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, no. 2, pp.110-116, Feb. 1968.
    [28] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,’’ in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 879-882, 1991.
    [29] M. W. Chapman and S. Raman, “A 60-GHz uniplanar MMIC 4X subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2580–2588, Nov. 2002.

    [30] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679-681, Sep. 2007.
    [31] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30-40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp.1382-1391, May 2004.
    [32] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
    [33] Y. A. Lai, C. M. Lin, C. H. Lin, and Y. H. Wang,” A New Ka-Band Doubly Balanced Mixer Based on Lange Couplers ,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.458- 460, Jul. 2008.
    [34] J. A. Hou and Y. H. Wang,”A Compact Quadrature Hybrid Based on High-Pass and Low-Pass Lumped Elements,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp.595-597, Aug 2007.

    下載圖示 校內:2009-08-08公開
    校外:2009-08-08公開
    QR CODE