簡易檢索 / 詳目顯示

研究生: 謝億勳
Hsieh, Yi-Shun
論文名稱: 廢釤鈷磁鐵浸漬液中釤、鈷、銅、鐵分離之研究
Separation of samarium, cobalt, copper and iron in the impregnation solution of scrap samarium cobalt magnet
指導教授: 申永輝
Shen, Yong-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 離子交換沉澱法
外文關鍵詞: Ion exchange, precipitation, samarium, cobalt, copper, iron
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,稀土元素的需求連年攀升,許多國家紛紛把礦物,尤其稀土礦物當作其戰略資源的一環,然而台灣沒有豐富的天然資源,為了獲得資源,從廢料中提取資源,透過新概念-“都市礦山”,的方式使資源達到永續發展。
    本研究分為二部分,透過酸浸漬的方式可有效地從廢料中提取有價金屬,使用IRC748進行離子交換,在pH=2、稀釋一倍的情況下,從四元金屬溶液中,成功的吸附銅、鐵離子,使他與釤、鈷離子分離,在使用2N的硫酸脫附IRC748中的銅、鐵離子,其中銅離子回收率99.1%,鐵離子回收率99.7%。
    透過第一階段的研究可獲得銅鐵二元溶液與釤鈷二元溶液,透過沉澱法將其再次分離,其中沉澱銅使用草酸,在pH=0.24下依然可作用,由於鐵會與草酸形成錯合物,使他溶解於溶液中,使銅可與鐵有效的分離,其中,在室溫下、草酸和銅離子莫爾比為10、2hr有最佳沉澱率98.6%,純度99.9%。使用氨水沉澱鐵,由於在少量氨水下金屬離子會因為氫氧根使溶液中的金屬離子形成金屬氫氧化物沉澱,但在過量氨水中氫氧化銅會與氨根錯和,使銅離子再次溶解在溶液中,其中在(Cu2++Fe3+)/NH4+=10時,有最佳沉澱率99.9%,純度99.9%。使用硫酸鈉當沉澱劑,因為與鑭系硫酸鹽晶形相似,因此共同沉澱,其中溫度80℃、1.5hr、硫酸鈉和釤離子莫爾比4,有最佳沉澱率99.7%,純度99.9%。為了使鈷離子得到更好的應用,因此再脫釤溶液中製作草酸鈷,使用草酸當沉澱劑,在pH=2、60℃、1hr、莫爾比為1時有最佳沉澱率99.6%,其純頓99.8%

    With the advancement of science and technology, the demand for rare earth elements has been rising year after year. Many countries have regarded minerals, especially rare earth minerals, as part of their strategic resources. However, Taiwan does not have abundant natural resources. In order to obtain resources, they need to extract resources from waste materials. To achieve sustainable development. This research is divided into two parts. Valuable metals can be effectively extracted from waste materials through acid impregnation. IRC748 is used to adsorb copper and iron ions to separate them from samarium and cobalt ions. The use of ammonia to desorb copper and iron on resin Iron ion. Through the first stage of research, the binary solution of copper and iron and the binary solution of samarium and cobalt can be obtained. They are separated again by precipitation method. The precipitated copper uses oxalic acid, which can still work at pH=0.24, because iron will form a complex with oxalic acid. Compound, so that it can be dissolved in the solution, so that copper can be effectively separated from iron. Use ammonia water to precipitate iron, because metal ions in a small amount of ammonia water will cause metal ions in the solution to form metal hydroxide precipitates due to hydroxide, but in excess ammonia water, copper hydroxide will be mixed with ammonia, and copper ions will be dissolved again In the solution to achieve the effect of separation. Sodium sulfate is used as the precipitant, because it is similar in crystal form to the lanthanide sulfate, so it precipitates. In order to make better use of cobalt ions, oxalic acid is used as a precipitant, and then cobalt oxalate is produced in the de-samarium solution.

    Keywords: Ion exchange,precipitation,samarium,cobalt,copper,iron

    Extended Abstract i 中文摘要 vi 致謝 viii 目錄 ix 圖目錄 xii 表目錄 xv 第一章 前言 1 1-1 前言[1][2] 1 1-2 研究目的與動機 2 第二章 文獻回顧 6 2-1 釤鈷磁鐵介紹[16][17][18] 6 2-2 釤、鈷、銅、鐵之性質 8 2-2-1 釤之物理與化學特性 8 2-2-2 鈷之物理與化學特性 [21] 9 2-2-3 銅之物理與化學特性[22] 10 2-2-4 鐵之物理與化學特性[23] 12 2-3 浸漬液回收有價金屬之方法 14 2-3-1 蒸發法 14 2-3-2 溶媒萃取 14 2-3-3 離子交換[24][25][26] 16 2-3-4 沉澱法 30 第三章 研究方法與步驟 35 3-1 實驗藥品 35 3-2 實驗方法與步驟 37 3-2-1 浸漬液 38 3-2-2 離子交換 38 3-2-3 沉澱法 39 3-3 實驗儀器分析 40 3-3-1 XRD 40 3-3-2 AA 41 3-3-3 SEM 42 3-3-4 能量散步分析儀 42 3-3-5 ICP 43 3-3-6 pH meter 43 第四章 結果與討論 45 4-1 IRC748樹脂吸附浸漬液中銅、鐵離子實驗 45 4-1-1 離子交換吸附浸漬液中銅、鐵離子 45 4-1-2 管柱內流場之影響 52 4-1-3 銅、鐵離子脫附 55 4-2 選擇性沉澱釤、鈷離子 59 4-2-1 釤離子之沉澱 59 4-2-2 鈷離子之沉澱 63 4-3 選擇性沉澱銅、鐵離子 67 4-3-1 鐵離子之沉澱 67 4-3-2 銅離子之沉澱 68 第五章 結論 75 參考資料 77

    [1] Chen, Jing, et al. "Rare earth passivation and corrosion resistance of zirconium coated NdFeB magnets." Journal of Rare Earths (2020).
    [2] Chen, Jing, et al. "Phosphating passivation of vacuum evaporated Al/NdFeB magnets boosting high anti-corrosion performances." Surface and Coatings Technology 399 (2020): 126115.
    [3] Chen, H., et al. "Effects of Ag on the magnetic and mechanical properties of sintered NdFeB permanent magnets." Journal of Magnetism and Magnetic Materials 485 (2019): 49-53.
    [4] Song, Tingting, et al. "Magnetic properties improvement of hot-deformed Nd–Fe–B permanent magnets by Pr–Cu eutectic pre-diffusion process." Acta Materialia 174 (2019): 332-341.
    [5] Qiaoying, Zhou, et al. "Influence of the electroplating pretreatment on corrosion mechanism of NdFeB magnets." Journal of Rare Earths 34.2 (2016): 152-157.
    [6] Jiang, Wei, et al. "Preparation of Ni coating on NdFeB by magnetic jet electrodeposition." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233.9 (2019): 1946-1953.
    [7] Sagawa, Masato, et al. "New material for permanent magnets on a base of Nd and Fe." Journal of Applied Physics 55.6 (1984): 2083-2087.
    [8] Chen, Jing, et al. "Phosphating passivation of vacuum evaporated Al/NdFeB magnets boosting high anti-corrosion performances." Surface and Coatings Technology 399 (2020): 126115.
    [9] Cullity, Bernard Dennis, and Chad D. Graham. Introduction to magnetic materials. John Wiley & Sons, 2011.
    [10] Yi, Jianhong, and Yuandong Peng. "Review of research on 2: 17 type SmCo rare earth permanent magnets." Xiyou Jinshu Cailiao yu Gongcheng(Rare Metal Materials and Engineering) 33.4 (2004): 337-342.
    [11] Talijan, Nadežda M. "Magnetic properties of sintered high energy Sm-Co and Nd-Fe-B magnets." Science of Sintering 38.1 (2006): 73-82.
    [12] Feng, D. Y., L. Z. Zhao, and Z. W. Liu. "Magnetic-field-induced irreversible antiferromagnetic–ferromagnetic phase transition around room temperature in as-cast Sm–Co based SmCo7− xSix alloys." Physica B: Condensed Matter 487 (2016): 25-30.
    [13] 劉芳,釣魚台之爭凸顯中國稀土出口問題,中廣新聞網,2010
    [14] U.S.Geological Survey,Mineral Commodity Summaries2019
    [15] 潘文炎,台灣稀有資源循環發展策略,財團法人中技社,2015
    [16] Strnat, K. J. "Rare earth-cobalt permanent magnets." Handbook of Ferromagnetic Materials 4 (1988): 131-209.
    [17] Goll, D., H. H. Stadelmaier, and H. Kronmüller. "Samarium–cobalt 2: 17 magnets: Analysis of the coercive field of Sm2 (CoFeCuZr) 17 high-temperature permanent magnets." Scripta Materialia 63.2 (2010): 243-245.
    [18] Önal, Mehmet Ali Recai, Sofía Riaño, and Koen Binnemans. "Alkali baking and solvometallurgical leaching of NdFeB magnets." Hydrometallurgy 191 (2020): 105213.
    [19] Meija, Juris, et al. "Atomic weights of the elements 2013 (IUPAC Technical Report)." Pure and Applied Chemistry 88.3 (2016): 265-291.
    [20] Dolukhanyan, S. K. "Synthesis of novel compounds by hydrogen combustion." Journal of alloys and compounds 253 (1997): 10-12.
    [21] Lalande, G., et al. "Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells." Electrochimica Acta 40.16 (1995): 2635-2646.
    [22] Li, Zhengwen, Antti Rahtu, and Roy G. Gordon. "Atomic layer deposition of ultrathin copper metal films from a liquid copper (I) amidinate precursor." Journal of The Electrochemical Society 153.11 (2006): C787.
    [23] Jung, Chu W., and Paula Jacobs. "Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil." Magnetic resonance imaging 13.5 (1995): 661-674.
    [24] Malovanyy, Andriy, et al. "Concentration of ammonium from municipal wastewater using ion exchange process." Desalination 329 (2013): 93-102.
    [25] Lito, Patrícia Ferreira, José Pedro Salgado Aniceto, and Carlos Manuel Silva. "Modelling ion exchange kinetics in zeolyte-type materials using Maxwell-Stefan approach." Desalination and Water Treatment 52.28-30 (2014): 5333-5342.
    [26] Silva,Carlos M.和PatríciaF. Lito。“ Maxwell–Stefan方法在微孔材料中離子交換中的應用。批處理過程建模。” 化學工程科學62.23(2007):6939-6946。
    [27] Navarro, Ronald R., et al. "Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine." Water research 35.11 (2001): 2724-2730.
    [28] Donia, Ahmed M., Asem A. Atia, and Khalid Z. Elwakeel. "Selective separation of mercury (II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde." Journal of hazardous materials 151.2-3 (2008): 372-379.
    [29] Tofighy, Maryam Ahmadzadeh, and Toraj Mohammadi. "Adsorption of divalent heavy metal ions from water using carbon nanotube sheets." Journal of hazardous materials 185.1 (2011): 140-147.
    [30] Lin, Li-Chun, and Ruey-Shin Juang. "Ion-exchange equilibria of Cu (II) and Zn (II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins." Chemical Engineering Journal 112.1-3 (2005): 211-218.
    [31] Li, Jian-Rong, et al. "Layered chalcogenide for Cu2+ removal by ion-exchange from wastewater." Journal of Molecular Liquids 200 (2014): 205-212.
    [32] Chen,J。Paul,蔡夢龍和Zhang Beiping。“競爭性離子,腐植酸和pH值對離子交換樹脂從合成工業廢水中去除銨和磷的影響。” 廢棄物管理22.7(2002):711-719。
    [33] Chen, Kuei-Hsiang, et al. "Rapid and efficient recovery of C-phycocyanin from highly turbid Spirulina platensis algae using stirred fluidized bed ion exchange chromatography." Separation and Purification Technology 209 (2019): 636-645.
    [34] Chang, Yu-Kaung, and Iun-Ping Chang. "Method development for direct recovery of lysozyme from highly crude chicken egg white by stirred fluidized bed technique." Biochemical engineering journal 30.1 (2006): 63-75.
    [35] Onoda, Hiroaki, and Yuki Kurioka. "Selective removal and recovery of samarium from mixed transition metal solution using phosphoric acid." Journal of Environmental Chemical Engineering 4.4 (2016): 4536-4539.
    [36] Lokshin, E. P., et al. "Solubility of double alkali metal (Na, K) rare-earth (La, Ce) sulfates in sulfuric-phosphoric acid solutions at 20 C." Russian journal of applied chemistry 78.7 (2005): 1058-1063.
    [37] Zhou, Kanggen, et al. "Sulfuric acid leaching of SmCo alloy waste and separation of samarium from cobalt." Hydrometallurgy 174 (2017): 66-70.
    [38] Meng, Qi, Yingjie Zhang, and Peng Dong. "A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects." Waste Management 71 (2018): 372-380.
    [39] Shibata, Junji, et al. "Development of adavanced separation technology of rare metals using extraction and crystallization stripping." Materials transactions (2012): M2012234.
    [40] Zhu, Mengqiang, et al. "Precipitation pathways for ferrihydrite formation in acidic solutions." Geochimica et Cosmochimica Acta 172 (2016): 247-264.
    [41] Bulakhe, Ravindra N., et al. "Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application." RSC advances 6.18 (2016): 14844-14851.
    [42] Sarı, Z. Abidin, et al. "Selective Copper Recovery with HCl Leaching from Copper Oxalate Material." Mining, Metallurgy & Exploration (2020): 1-11.
    [43] Krishnamurty, Kotra V., and Gordon M. Harris. "The Chemistry of the Metal Oxalato Complexes." Chemical Reviews 61.3 (1961): 213-246.
    [44] Gyliene, O., and M. Salkauskas. "Metal recovery from spent electroless plating solutions by oxalate precipitation." Plating and surface finishing 82.10 (1995): 61-63.
    [45] 李建榮等。“層狀硫族化物可通過廢水中的離子交換去除Cu2 +。” Journal of Molecular Liquids 200(2014):205-212。
    [46] Lee, Sung Oh, et al. "Dissolution of iron oxide using oxalic acid." Hydrometallurgy 87.3-4 (2007): 91-99.
    [47] Yashnik, Svetlana, and Zinfer Ismagilov. "Cu-substituted ZSM-5 catalyst: Controlling of DeNOx reactivity via ion-exchange mode with copper–ammonia solution." Applied Catalysis B: Environmental 170 (2015): 241-254.
    [48] Tan, Jianfeng, et al. "Self-template derived CuO nanowires assembled microspheres and its gas sensing properties." Sensors and Actuators B: Chemical 252 (2017): 1-8.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE