| 研究生: |
朱唯禎 Chu, Wei-Chen |
|---|---|
| 論文名稱: |
以聯合分析與系統動態學探討新產品開發之消費者偏好選擇 Consumer Preference in New Product Development through Conjoint Analysis and System Dynamics for Selecting |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 系統動態學 、消費者偏好 、產品屬性 、聯合分析 |
| 外文關鍵詞: | system dynamics, consumer preference, product attribute, conjoint analysis |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新產品開發研究是企業掌握市場及維持競爭優勢的重要活動。但處於全球化競爭的市場,能否快速推出新功能與新產品,似乎成為產業在此激烈競爭中存活的關鍵。然而,消費者真的就偏好新產品?其實不然。雖然新產品更迭頻繁,但如何與消費者偏好建立起正向關聯性,進而促使消費者產生購買意願,仍是廠商推出新產品最大的挑戰。因此,若能在短暫的產品開發階段就可以了解消費者需求,並將之運用於新產品開發,將可永續維持企業核心競爭力。
在以往的研究中,總是將產品屬性、價格及成本分開探討,並且一再強調快速推出新產品即可使企業形成競爭優勢,較無考慮功能屬性等問題。故本研究的目的為藉由此方法論探討各變數如何影響消費者購買意願及延伸討論競爭廠商間的決策分析。描述如何結合系統動態與產品屬性來協助廠商探究消費者偏好與廠商間的策略性行為。
本研究以智慧型手機為例,討論智慧型手機功能屬性如何影響消費者購買意願的變化,從研究中發現,不管在任何價格水準下,編號一及編號三的產品屬性皆最受到消費者喜愛。顯示消費者最偏好之規格為:品牌(B公司)、CPU(1GHZ)、相機畫素(1000萬)、多媒體(杜比音效)及電子郵件(有push email);而三種價格水準中,消費者最偏好之價格水準為12,000到17,000之間,顯示不是價格越低消費者越愛,還會受到產品品質等因素之影響。研究顯示,各種屬性組合所產生之效用值,廠商可利用此表了解各種屬性組合所導致之購買意願之增減,以進行新產品開發之參考依據。
The consumer market is more and more complicated because of the high-speed development of new product. Recently,the ability to quickly introduce new features and new products, seems to be the key to survive in this highly competitive market. how to establish a positive relationship with consumer preferences resistance and trying to promote consumer purchasing intention will be the major course for enterprise.
The research purpose of this study is to build a new product development model through combining system dynamics and conjoint analysis. This study will offer some results and forecasting the sales about new product in order to reduce the failure rates in the future.
This study concerning to the Smartphone market. Whether at any price level, the number one and number three product attributes that are most loved by consumers.
The most prefer attribute is:Brand(B company),CPU(1GHZ),Camera(10million) Multimedia(Dolby)andE-mail(push email).With the three price level,consumers most prefer price level is between 12,000 and 17,000.The result show that consumers decision is not only affected by price but also attribute.Enterprises can use this model to reduce the risk of new product development.
參考文獻
中文文獻:
王姿惠, 刁儷雅, & 林豐瑞. (2012). 產品屬性, 品牌形象, 消費情境影響滿意度之研究-以具認驗證標章之生鮮農產品為例. 農業推廣文彙(57 輯), 39-58.
張書文, & 戴華亭. (2006). 產品設計與開發.
張景盛, 藍宜亭, 陳卜僑, & 黃俊英. (2011). 產品屬性、知覺風險與知覺利益之關係-以網路通路為例. 行銷評論, 125-148.
楊朝仲, 張良正, 葉欣誠, & 葉昭憲. (2007). 系統動力學思維與應用.
劉水深. (1984). 產品規格化與策略運用.
周文賢, & 張欽富. (2000). 聯合分析在產品設計之運用.
吳思佳(2010),「科技產品內外部屬性消費價值之聯合分析-以智慧型手機為例」,政治大學企業管理研究所碩士論文
英文文獻:
Bass, F. M. (1969). A New Product Growth for Model Consumer Durables. Management Science, 15(5), 215-227.
Booz, et al. (1982). ,New products management for the 1980s. ,New York:Booz,Allen&Hamilton.
Chai, K. H., & Xin, Y. (2006). The application of new product development tools in industry: The case of Singapore. Ieee Transactions on Engineering Management, 53(4), 543-554.
Chung, Jaihak, & Rao, Vithala R. (2012). A General Consumer Preference Model
for Experience Products: Applicationto Internet RecommendationServices. Journal of Marketing Research, XLIX (June 2012), 289–305.
Claret, A., et al. (2012). Consumer preferences for sea fish using conjoint analysis: Exploratory study of the importance of country of origin, obtaining method, storage conditions and purchasing price. Food Quality and Preference, 26(2), 259-266.
Decker & Gnibba-Yukawa. (2010). Sales Forecasting in High-Technology Markets: A Utility-Based Approach. Journal of Product Innovation Management, 27(1), 115-129.
Drechsler, W., et al. (2013). Improving Marketing's Contribution to New Product Development. Journal of Product Innovation Management, 30(2), 298-315.
Ernst, Holger, et al. (2010). Sales, marketing, and research-and-development cooperation across new product development stages: implications for success. Journal of Marketing, 74(5), 80-92.
Fishbein,M. (1962). An investigation of the relationships between beliefs about an object andthe attitude toward that object. Human Relations,16,233-299
Forrester, J. (1961). Industry dynamics.
Goodwin, P., & Meeran, S. (2012). Robust Testing of the Utility-based High-technology Product Sales Forecasting Models Proposed by Decker and Gnibba-Yukawa (2010). Journal of Product Innovation Management, 29, 211-218.
Green, P. E., & Rao, V. R. (1971). Conjoint Measurement for Quantifying Judgmental Data. Journal of Marketing Research, 8(3), 355-363.
Green, P. E., & Srinivasan, V. (1978). Conjoint Analysis in Consumer Research - Issues and Outlook. Journal of Consumer Research, 5(2), 103-123.
Hagerty, Michael R. (1986). The Cost of Simplifying Preference Models. Marketing Science, 5(4), 298-319.
Halme, M., & Kallio, M. (2011). Estimation methods for choice-based conjoint analysis of consumer preferences. European Journal of Operational Research, 214(1), 160-167.
Joseph F. Hair, et al. (1995).,Multivariate data analysis(4thed.),:with readings:Prentice-Hall,Inc.
Kalish, S., & Lilien, G. L. (1986). A Market Entry Timing Model for New Technologies. Management Science, 32(2), 194-205.
Khaji, Mohammad Reza, & Shafaei, Rasoul. (2011). A system dynamics approach for strategic partnering in supply networks. International Journal of Computer Integrated Manufacturing, 24(2), 106-125.
Kirkwood, Craig W. (1998). New Product DynamicsIllustrative System Dynamics Models
Lee, J., et al. (2006). Forecasting future demand for large-screen television sets using conjoint analysis with diffusion model. Technological Forecasting and Social Change, 73(4), 362-376. Lee, Nancy R, & Kotler, Philip. (2011). Social marketing: Influencing behaviors for good: SAGE Publications, Incorporated.
Miao, Yu Jun, & Chen, Hong Mei. (2011). Innovation and new product development management. Advanced Materials Research, 156, 1578-1581.
Ng, Tsan Sheng, et al. (2012). Robust parameter design for system dynamics models: a formal approach based on goal-seeking behavior. System Dynamics Review, 28(3), 230-254.
Rodrigues, Lewlyn LR, et al. (2006). System dynamics approach for change management in new product development. Management Research News, 29(8), 512-523.
Ruetzler, Tanya, et al. (2012). What is professional attire today? A conjoint analysis of personal presentation attributes. International Journal of Hospitality Management, 31(3), 937-943.
Schmidt, M. J., & Gary, M. S. (2002). Combining system dynamics and conjoint analysis for strategic decision making with an automotive high-tech SME. System Dynamics Review, 18(3), 359-379.
Sterman, John D. (2000). Business dynamics: systems thinking and modeling for a complex world (Vol. 19): Irwin/McGraw-Hill Boston.
Tao, Yao, et al. (2013). Impact of Economic and Technical Uncertainties on Dynamic New Product Development. Engineering Management, IEEE Transactions on, 60(1), 157-168.
Tseng, F. M., et al. (2012). Combining conjoint analysis, scenario analysis, the Delphi method, and the innovation diffusion model to analyze the development of innovative products in Taiwan's TV market. Technological Forecasting and Social Change, 79(8), 1462-1473.
Yao, Tao, et al. (2013). Impact of Economic and Technical Uncertainties on Dynamic New Product Development.
Zeithaml, & A, Valarie. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. The Journal of Marketing, 2-22.
校內:2020-06-27公開