簡易檢索 / 詳目顯示

研究生: 陳柏仲
Chen, Bo-Zhong
論文名稱: 應用DQEM分析軸向分佈力對樑振動之影響
The application of DQEM to the analysis of the influence of axially distributed force to the vibration of an Euler-Bernoulli beams
指導教授: 陳長鈕
Chen, Chang-New
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 自然頻率軸向拉力軸向推力
外文關鍵詞: axial force, DQEM, tensile force
相關次數: 點閱:70下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類科技的不斷創新及蓬勃發展,使得數值計算方法廣泛的被應用在結構的分析上,近年來有限元素法及有限差分法為兩種既有的數值結構分析技巧。有限元素法因為能夠被有系統地編成電腦程式,已經被廣泛應用於一般的結構分析;數值積分表示微分元素法為陳長鈕老師所研究開發出來的一種結構分析的數值方法,除了能有系統地編寫成電腦程式外,也可以更有效地求得精確的解。
    數值積分表示微分元素法將欲分析的結構物分割成有限個元素,然後利用數值積分表示微分的技巧,對定義於各個元素的微分或偏微分關係式做數值的離散化,然後由考慮在整體結構物的離散點滿足所應具有的力學微分關係式的條件下,可得到結構物的離散方程式系統。
    本文應用陳長鈕老師獨創之數值積分表示微分元素法(DQEM)來求解不同的邊界條件下受軸向分佈力及於任一元素與元素邊界加上附加質量之樑的振動問題。數值計算的結果證明此方法的有效性。

    A new numerical approach for solving the problem of a beam with random force is proposed. The approach uses the differential quadrature (DQ) to discretize the governing differential equations defined on all elements, the transition conditions defined on the inter-element boundaries of two adjacent elements, and the boundary conditions of the beam. By assembling all the discrete relation equations, a global linear algebraic system can be obtained. Numerical results of the solutions of beams resting on a foundations obtained by the DQEM are presented.
    The differential quadrature element method (DQEM) proposed by Dr.C.N. Chen is a numerical analysis method for analyzing continuum mechanics problems. The numerical procedure of this method can systematically implement into a computer program. The coupling of solutions at discrete points is strong. In addition, all fundamental relations are considered in constructing the overall discrete algebraic system. Consequently, convergence can be assured by using less discrete points, and accurate results can be obtained by using less arithmetic operations which can reduce the computer CPU time required.

    目錄 摘要 .......................................................................................................................I 致謝.......................................................................................................................III 目錄.......................................................................................................................IV 表目錄....................................................................................................................V 圖目錄...................................................................................................................VI 符號表................................................................................................................VIII 第一章 緒論...........................................................................................................1 第二章 數值積分表示微分法(DQM)簡述 ...............................................3 2-1 DQM 介紹 ................................................................................3 2-2 DQM 的數學模型 ......................................................................5 2-3 權重係數之計算法(一) .............................................................6 2-4 權重係數之計算法(二) .............................................................8 2-5 DQEM 簡述................................................................................11 第三章 應用DQEM分析軸向力對等斷面樑振動影響之問題模式.............13 3-1 理論推導 ...................................................................................13 3-2 問題一(邊界條件為固定-鉸接).........................................21 3-3 問題二(結合樑、邊界條件為鉸接-鉸接).........................29 3-4 問題三(結合樑、邊界條件為固定-自由).........................38 3-5 問題四(具附加質量、邊界條件為鉸接-鉸接).................47 3-6 問題五(具附加質量、邊界條件為固定-固定).................59 3-7 問題六(具附加質量、邊界條件為固定-鉸接).................68 第四章 應用DQEM分析軸向力對變斷面樑振動影響之問題模式.............81 4-1 理論推導 ...................................................................................81 4-2 問題一(矩形樑、邊界條件為固定-自由).........................89 4-3 問題二(矩形樑、邊界條件為固定-鉸接).........................99 第五章 結論 .................................................................................................109 參考文獻 ...........................................................................................................110 附錄一 五個離散點之權重係數 ........................................................................A 附錄二 六個離散點之權重係數 ........................................................................B 附錄三 七個離散點之權重係數 ........................................................................C 附錄四 八個離散點之權重係數 ........................................................................D 附錄五 九個離散點之權重係數 ........................................................................E 附錄六 十個離散點之權重係數 ........................................................................F 附錄七 十一個離散點之權重係數 ....................................................................G

    參考文獻

    【1】R. E. Bellman and J. Casti "Differential Quadrature and Long-term Itegration" , J. Math. Anal. , 34 , 235-238(1971)
    【2】F. Civan and C. M. Sliepcevich "Differential Quadratrual for Multi-dimentional
    Problems" , J. Math. Anal. Appl. , 101 , 423-443(1984)
    【3】S. K. Jang , C. W. Bert and A. G. Striz "Application of Differential Quadrature to
    Static Analysis of Structural Components", Int. J. Numer. Methods eng. , 28 , 561-577(1989)
    【4】林育男 “數值積分表示微分元素法的研究”, 國立成功大學造船及船舶機械工程研究所碩士論文(1995)
    【5】曾紹瑜 “應用DQEM分析Pasternak彈性基座的樑結構問題”, 國立成功大學造船及船舶機械工程研究所碩士論文(2003)
    【6】宋治勇 “數值積分表示微分元素法振動分析模式”, 國立成功大學造船及船舶機械工程研究所碩士論文(1996)
    【7】何彥輝 “應用DQEM分析具與不具彈性基座之變斷面樑的問題”, 國立成功大學造船及船舶機械工程研究所碩士論文(2000)
    【8】C. N. Chen " Generalization of Differential Quadrature Discretization",
    Numerical Algorithms, Vol.22, 167-182 (1999)
    【9】Chang Shu And Bryan E. Richard "Application of Generalized Differential
    Quadrature to solve Two-Dimensional Incomoressible Navier-Stokes Equations" ,
    International Journal For Numerical Method in Fluid, Vol. 15, 791-798 (1992)
    【10】謝明錡 "數值積分表示微分元素法具彈性基座樑分析模式", 國立成功大學造船及船舶機械工程研究所碩士論文(1996)
    【11】何彥輝 "應用 DQEM 分析具與不具彈性基座之變斷面樑的問題", 國立成功大學造船及船舶機械工程研究所碩士論文(2000)
    【12】Singiresu S. Rao "Mechanical Vibrations", Addison Wesley , Second Edition(1990)
    【13】Eisenberger, M. and Bielak, J. " Finite beams on infinite two-parameter elastic foundations ", Computers and Structures , v42 , n4 , 661-664 (1992)
    【14】邱富勇 "變斷面柱挫曲問題之數值積分表示微分法分析模式", 國立成功大學造船及船舶機械工程研究所碩士論文(1998)
    【15】Franciosi, C. and Masi, A " Free vibrations of foundation beams on two-parameter elastic soil ", Computers and Structures , v47 , n3 , 419-426 (1993)
    【16】De Rosa, M. A. " Stability and dynamic analysis of two-parameter elastic foundation beams ", Computers and Structures , v49 , n2 , 341-349 (1993)
    【17】C. N. Chen " A Differentail Quadrature Element Method ", Proc. 1st Intl. Conf. Engr. Computation and Computer Simulation , Changsha , China , 25-35 (1995)
    【18】C. N. Chen " Solution of beam on elastic foundation by DQEM ", J. Engrg.
    Mech., v124 , n12 , 1381-1384 (1998)
    【19】Gulkan, P. and Alemdar, B. N. " Exact finite element for a beam on a two-parameter elastic foundation " , Structural Engineering and Mechanics , v7 , n3 , 259-276(1999)
    【20】Eisenberger, M. and Yankelevsky, D.Z. "Exact stiffness matrix for beams on elastic foundation" , Computers and Structures, 21 , 1355-1359(1985)
    【21】 Shock & Vibration handbook , 2nd Edition, Edited by C.M. Harris and C.E. Crede, McGraw-Hill, Inc., 1976.
    【22】I.A. Karnovsky and O.I. Lebed, Formulas for Structural Dynamics: Tables,
    Graphs and Solutions, McGraw-Hill, Inc., 2001.
    【23】Chiwanga, M. and Valsangkar, A. J. " Generalised beam element on two-parameter elastic foundation ", J. Str. Div., ASCE , 14 , 1414-1427(1988)
    【24】H. Reismann & P. Pawlik “Elasticity , Theory and Application”, Wiley-Interscience , 226-228(1980)
    【25】H. DU,M. K. M. Liew AND M.K.Lim “Generalized Differential Quadrature Method for Buckling Analysis”, Journal of Engineering Mechanics , Vol. 122, No.2, February ,(1996)
    【26】洪崇欽 "應用DQEM分析軸向力對樑振動之影響 ", 國立成功大學造船及船舶機械工程研究所碩士論文(2006)

    下載圖示 校內:立即公開
    校外:2006-08-18公開
    QR CODE