簡易檢索 / 詳目顯示

研究生: 王紹謙
Wang, Shao-Cian
論文名稱: 自供電風能收集摩擦奈米發電機的開發與應用
A study on development and application of self-powered wind energy harvesting triboelectric nanogenerators
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 風力發電摩擦發電機翻模技術二氧化碳雷射
外文關鍵詞: Wind harvesting, Triboelectric nanogenerator, Polymer casting, CO2 laser
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自行車作為一種大眾運動,可以觀察到自行車上安裝了許多小型燈裝置用於夜晚警示,然而這些裝置皆需使用電池,電池的化學成份對於環境來說是不友善的。風是自然界中生生不息的乾淨能源,具有廣泛的應用前景及發展潛力。然而,傳統風力發電機存在諸多限制,例如需要大型的風力發電機設備、設備價格昂貴、只能在建立在具有足夠風量的地方才能夠收集風能。
    因此,本研究開發一種能收集小風量的摩擦奈米發電機裝置,其輕薄小巧能安裝於自行車前端,在騎行過程中能將迎面而來的風轉化為可用的電能。實驗使用CO2雷射加工結合高分子材料PDMS翻模技術製作出微針狀形貌結構的摩擦層。並且開發出具有雙面微結構的摩擦層相較於單面微結構的摩擦層能再進一步提升摩擦電輸出性能,本文將針對單面與雙面微針摩擦層影響輸出電性能進行探討。
    本文提出的雙面微針結構摩擦層在1 MΩ負載下具有130 V的電壓、電流為101.2 μA和最大瞬時功率10.24 mW,與平坦無結構摩擦層的1.23 mW相比,功率提升了8倍之多。在電容充放電實驗上能在短時間充致飽和電壓4.43 V,在發光二極體LED驅動實驗中,點亮了600個LED燈,無需經過額外供電的過程,證明了其可作為自供電警示裝置的可行性,並且在2400次循環擊打摩擦層的耐用測試上證明了此裝置有一定耐用性。
    最後將雙面微針摩擦層作為摩擦奈米發電機風力收集器的摩擦層,在風速28.9 m/s下,得到23.4 V的瞬時電壓,並且能點亮21顆LED燈,將此裝置安裝於自行車上,可以在大約20 km/hr的騎行速度下點亮10顆LED燈。

    This study presents the development of a triboelectric nanogenerator device capable of harvesting small wind energy. The lightweight and compact device can be installed at the front end of a bicycle, converting the incoming wind during cycling into usable electrical energy. The experimental approach involves utilizing CO2 laser processing along with the polymer material PDMS molding technique to fabricate a microneedle structured layer. Furthermore, a double-sided microneedle layer is developed, which significantly enhances the frictional electrical output performance compared to a single-sided microneedle layer. This paper investigates the impact of single and double-sided microneedle layers on the electrical output performance.
    The proposed double-sided microneedle structured layer shows an eight-fold increase in power output compared to the flat unstructured layer at a 1 MΩ load. In the capacitor charge-discharge experiments, the device is capable of quickly charging capacitors ranging from 0.47 uF to 10 uF to their saturation voltage. Additionally, in the LED driving experiments, the device successfully illuminated hundreds of LED lights without the need for any external power source, proving its feasibility as a self-powered warning device.
    If used as a triboelectric layer in a wind-driven nanogenerator for wind energy harvesting, the device can light up dozens of LED lights at a wind speed of 28.9 m/s. When installed on a bicycle, the device can serve as a night lighting device without the need for any batteries, successfully illuminating LED lights at normal cycling speeds.

    摘要 I 致謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1前言 1 1-2研究動機 3 1-3本文架構 4 第二章 文獻回顧 6 2-1 摩擦發電機的運作原理與工作模式 6 2-1-1 垂直接觸分離模式 8 2-1-2 橫向滑移模式 10 2-1-3 單電極模式 12 2-1-4 獨立式摩擦層模式 13 2-2 提升摩擦發電機性能的方法 14 2-2-1 摩擦材料與電極的選擇組合 15 2-2-2 表面形貌結構 17 2-2-3 材料改質與摻雜 20 2-3 雷射加工應用製作摩擦發電機摩擦層 23 2-4 摩擦發電機的應用發展回顧 26 2-4-1 自供電裝置與開關 27 2-4-2 風能量的收集 30 2-4-3 海浪能量的收集 37 2-4-4 穿戴式裝置與人機介面 42 第三章 實驗材料、製程及設備 46 3-1 實驗材料 46 3-2 實驗製程設備 48 3-2-1 二氧化碳雷射雕刻機 (CO2 laser) 48 3-2-2 氧電漿真空幫浦 (KD-O2 plasma) 50 3-2-3 可控式高溫爐 (Barnstead 48000) 51 3-2-4 光學顯微鏡 (Olympus BX 51) 51 3-2-5 3D列印機 (Ultimaker 3) 53 3-3 實驗測試裝置與系統組裝 54 3-3-1 垂直氣動式往復機構 54 3-3-2 暫態波形紀錄器 (HIOKI 8870-20) 55 3-3-3 風力收集器外型設計 56 3-4 雙面結構摩擦層的製作 57 3-4-1 CO2雷射加工參數設計 57 3-4-2 雙面微針結構摩擦層製作 59 第四章 結果與討論 61 4-1 雷射加工參數對高分子材料翻模後的影響 61 4-1-1 不同雷射功率加工對壓克力的深度影響 61 4-1-2 相同功率不同加工次數對壓克力的影響 62 4-1-3 微針加工與高分子材料翻模 63 4-2 摩擦層基底厚度對輸出性能影響 65 4-2-1 不同深度模具製作成雙面微針摩擦層 66 4-2-2 不同基底厚度的雙面微針摩擦層電性能差異 67 4-3平坦無結構、單面與雙面微針摩擦層比較 68 4-3-1 平坦無結構的PDMS摩擦層電性能 69 4-3-2 單面微針摩擦層電性能 70 4-3-3 雙面微針摩擦層電性能 71 4-3-4 小結 72 4-4 摩擦奈米發電機應用於電子元件 72 4-4-1 電容器充電性能 73 4-4-2 點亮發光二極體測試 75 4-4-3 耐久度測試 76 4-5 風力收集應用分析 78 4-5-1 白努利定律 (Bernoulli's Principle) 78 4-5-2 不同風速、風量下的開路電壓值 81 4-5-3 自供電風力收集器應用於自行車 84 第五章 結論與未來工作 88 5-1 結論與本論文貢獻 88 5-2 未來工作 90 參考文獻 92

    [1] F. R. Fan, Z. Q. Tian, & Z. L. Wang, “Flexible triboelectric generator,” Nano energy, vol. 1(2), pp. 328-334, 2012.
    [2] Y. L. Zi, Simiao Niu, J. Wang, Z. Wen,W. Tang& Z.L. Wang,“Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators.”Nature communications, vol. 6(1), pp. 8376, 2015.
    [3] Z.L.Wang,J. Chen & L. Lin “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors.” Energy & Environmental Science, vol. 8(8),pp. 2250-2282, 2015.
    [4] K. Fan, S. Liu, H. Liu, Y. Zhu, W. Wang & D. Zhang, “Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester.” Applied Energy, vol. 216, pp. 8-20, 2018.
    [5] S.B. Jeon, D. Kim, G.W. Yoon, J.B. Yoon & Y.K. Choi, “Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight.” Nano Energy, vol. 12, pp. 636-645, 2015.
    [6] S. Jung, J. Lee, T. Hyeon, M. Lee & D.H. Kim, “Fabric‐based integrated energy devices for wearable activity monitors.” Advanced Materials, vol. 26(36), pp. 6329-6334, 2014.
    [7] Y. Yang, H. Zhang, Z.H. Lin,Y. S. Zhou,Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu & Z. L. Wang, ”Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system.” ACS nano, vol. 7(10), pp. 9213-9222, 2013.
    [8] P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang & Z. L. Wang, “Cylindrical rotating triboelectric nanogenerator.” ACS nano, vol. 7(7), pp. 6361-6366, 2013.
    [9] H. Zhang, Y. Yang, X. Zhong, Y. Su, Y. Zhou, C. Hu & Z. L. Wang, “Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires.” ACS nano, vol. 8(1), pp. 680-689, 2014.
    [10] M.Wang, J. Zhang, Y. Tang, J. Li, B. Zhang, E. Liang, Y. Mao & X. Wang, “Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.” ACS nano, vol. 12(6), pp. 6156–6162, 2018.
    [11] J. Bae, J. Lee, S. M. Kim, J. Ha, B. S. Lee, Y. J. Park, C. Choong, J. B. Kim, Z. L. Wang, H. Y. Kim, J. J. Park & U. I. Chung, “Flutter-driven triboelectrification for harvesting wind energy.” Nature communications, vol. 5(1), pp. 4929, 2014.
    [12] Z. H. Lin, G. Cheng, W. Wu, K. C. Pradel & Z. L. Wang, “Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor.” ACS nano, vol. 8(6), pp. 6440-6448, 2014.
    [13] Z. L. Wang. “Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives.” Faraday discussions, vol. 176, pp. 447-458, 2014.
    [14] X. Wang, S. Niu, Y. Yin, F. Yi, Z. You & Z. L.Wang, “Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low‐frequency water wave energy.” Advanced Energy Materials, vol. 5(24), pp. 1501467, 2015.
    [15] Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors," ACS Nano, vol. 7, pp. 9533-9557, 2013.
    [16] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, & Z. L. Wang, "Quantifying the triboelectric series," Nature communications, vol. 10(1), pp. 1-9, 2019.
    [17] T. A. Burgo, F. Galembeck, & G. H. Pollack, "Where is water in the triboelectric series?," Journal of Electrostatics, vol. 80, pp. 30-33. 2016
    [18] M. Seol, S. Kim, Y. Cho, K. E. Byun, H. Kim, J. Kim, & S. Park, " Triboelectric series of 2D layered materials," Advanced Materials, vol. 30(39), pp. 1801210, 2018.
    [19] C. Wu, A. C. Wang, W. Ding, H. Guo & Z. L. Wang, “Triboelectric nanogenerator: a foundation of the energy for the new era.” Advanced Energy Materials, vol. 9(1), pp. 1802906, 2019.
    [20] G. Zhu, Z.H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou & Z. L. Wang, “Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator.” Nano letters, vol. 13(2), pp. 847-853,2013.
    [21] H. Zhang, Y. Yang, Y. Su, J. Chen, K. Adams, S. Lee, & Z. L. Wang, " Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor," Advanced Functional Materials, vol. 24(10), pp. 1401-1407, 2014.
    [22] J. Yang, J. Chen, Y. Yang, H. Zhang, W. Yang, P. Bai, & Z. L. Wang, " Broadband vibrational energy harvesting based on a triboelectric nanogenerator," Advanced Energy Materials, vol. 4(6), pp. 1301322, 2014.
    [23] J. Chun, J. W. Kim, W. S. Jung, C. Y. Kang, S. W. Kim, Z. L. Wang, & J. M. Baik, "Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments," Energy & Environmental Science, vol. 8(10), pp. 3006-3012, 2015.
    [24] X. Pu, L. Li, H. Song, C. Du, Z. Zhao, C. Jiang, G. Cao, W. Hu, Z. L. Wang, “A self‐charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium‐ion battery for wearable electronics.” Advanced Materials, vol. 27(15), pp. 2472-2478, 2015.
    [25] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu & Z. L. Wang, "Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism." Nano letters, vol. 13(5), pp.2226-2233, 2013.
    [26] P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, & Z. L. Wang, "Cylindrical rotating triboelectric nanogenerator." ACS nano, 7(7), 6361-6366, 2013.
    [27] L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z. L. Wang," Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy," Nano letters, vol. 13, pp. 2916-2923, 2013.
    [28] G. Cheng, Z. H. Lin, Z. Du & Z. L. Wang, "Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator." Acs Nano, vol. 8(2), pp. 1932-1939, 2014.
    [29] D. Jiang, F. Guo, M. Xu, J. Cai, S. Cong, M. Jia, G. Chen & Y. Song, "Conformal fluorine coated carbon paper for an energy harvesting water wheel." Nano Energy, vol. 58, pp. 842-851, 2019.
    [30] H. Yang, M. Wang, M. Deng, H. Guo, W. Zhang, H. Yang, Y. Xi, X. Li, C. Hu & Z. L. Wang, "A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems." Nano Energy, vol. 56, pp. 300-306, 2019.
    [31] Y. Xie, S. Wang, L. Lin, Q. Jing, Z. H. Lin, S. Niu, & Z. L. Wang, "Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy." ACS nano, 7(8), 7119-7125, 2013.
    [32] Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, & Z. L. Wang, “Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system.” ACS nano, 7(10), 9213-9222, 2013.
    [33] F. Yuan, S. Liu, J. Zhou, X. Fan, S. Wang & X. Gong, “A smart Kevlar-based triboelectric nanogenerator with enhanced anti-impact and self-powered sensing properties.” Smart Materials and Structures, 29(12), 125007, 2020.
    [34] H. Zhang, D. Z. Zhang, D. Y. Wang, Z. Y. Xu, Y. Yang & B. Zhang, “Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring.” Rare Metals, vol. 41(9), pp. 3117-3128, 2022.
    [35] M. Zhang, Y. Jie, X. Cao, J. Bian, T. Li, N. Wang, Z. L. Wang, “Robust design of unearthed single-electrode TENG from three-dimensionally hybridized copper/polydimethylsiloxane film.” Nano Energy, vol. 30, pp. 155-161, 2016.
    [36] Z. L. Wang, J. Chen & L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors, " Energy & Environmental Science, vol. 8(8), pp. 2250-2282, 2015.
    [37] Z. Wen, J. Chen, M. H. Yeh, H. Guo, Z. Li, X. Fan, & Z. L. Wang, "Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer," Nano Energy, vol. 16, pp. 38-46, 2015.
    [38] L. Lin, S. Wang, S. Niu, C. Liu, Y. Xie, & Z. L. Wang, "Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor," ACS applied materials & interfaces, vol. 6(4), pp. 3031-3038, 2014.
    [39] H. Guo, X. He, J. Zhong, Q. Zhong, Q. Leng, C. Hu, & J. Zhou,"A nanogenerator for harvesting airflow energy and light energy," Journal of Materials Chemistry A, vol. 2(7), pp. 2079-2087, 2014.
    [40] S. Wang, Y. Xie, S. Niu, L. Lin and Z. L. Wang, "Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes," Advanced materials, vol. 26, pp. 2818-2824, 2014.
    [41] Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, & Z. L. Wang, "Grating‐structured freestanding triboelectric‐layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency," Advanced materials, vol. 26(38), pp. 6599-6607, 2014
    [42] Y. Xi, H. Guo, Y. Zi, X. Li, J. Wang, J. Deng, S. Li, C. Hu, X. Cao & Z. L. Wang, “Multifunctional TENG for blue energy scavenging and self‐powered wind‐speed sensor.” Advanced Energy Materials, vol. 7(12), pp. 1602397, 2017.
    [43] A. Ahmed, I. Hassan, M. Hedaya, T. A. El-Yazid, J. Zu & Z. L. Wang, “Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy.” Nano Energy, vol. 36, pp. 21-29, 2017.
    [44] Y. C. Lai, J. Deng, S. L. Zhang, S. Niu, H. Guo & Z. L. Wang, "Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing," Advanced Functional Materials, vol. 27, pp. 1604462, 2017.
    [45] I. W. Tcho, W. G. Kim, S. B. Jeon, S. J. Park, B. J. Lee, H. K. Bae, D. Kim & Y. K. Choi, “Surface structural analysis of a friction layer for a triboelectric nanogenerator.” Nano energy, 42, 34-42, 2017.
    [46] S. J. Kim, W. Song, Y. Yi, B. K. Min, S. Mondal, K. S. An & C. G. Choi, "High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection," ACS applied materials & interfaces, vol. 10, pp. 3921-3928, 2018.
    [47] H. Wang, M. Shi, K. Zhu, Z. Su, X. Cheng, Y. Song, X. Chen, Z. Liao, M. Zhang & H. Zhang, "High performance triboelectric nanogenerators with aligned carbon nanotubes," Nanoscale, vol. 8, pp. 18489-18494, 2016.
    [48] Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li, X. Zhang, Z. L. Wang, "Self-powered triboelectric nanosensor with poly (tetrafluoroethylene) nanoparticle arrays for dopamine detection," ACS nano, vol. 9, pp. 8376-8383, 2015.
    [49] Q. Jing, G. Zhu, P. Bai, Y. Xie, J. Chen, R. P. Han, Z. L. Wang, "Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion," ACS nano, vol. 8, pp. 3836-3842, 2014.
    [50] Z. Qin, Y. Yin, W. Zhang, C. Li, K. Pan, "Wearable and Stretchable Triboelectric Nanogenerator Based on Crumpled Nanofibrous Membranes," ACS applied materials & interfaces, vol. 11, pp. 12452-12459, 2019.
    [51] S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim & D. W. Kim, "Transparent flexible graphene triboelectric nanogenerators," Advanced materials, vol. 26, pp. 3918-3925, 2014.
    [52] H. Chu, H. Jang, Y. Lee, Y. Chae and J. H. Ahn, "Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics," Nano Energy, vol. 27, pp. 298-305, 2016.
    [53] A. Mata, A. J. Fleischman and S. Roy, "Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems," Biomedical microdevices, vol. 7, pp. 281-293, 2005.
    [54] A. F. Diaz & R. M. Felix-Navarro, "A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties," Journal of Electrostatics, vol. 62, pp. 277-290, 2014.
    [55] S. Wang, L. Lin, & Z. L. Wang, "Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics," Nano letters, vol. 12(12), 6339-6346, 2012.
    [56] X. S. Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang & H. X. Zhang, “Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano letters, vol. 13(3), pp. 1168-1172, 2013.
    [57] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang & Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.” Nano letters, vol. 12(6), pp. 3109-3114, 2012.
    [58] J. Huang, X. Fu, G. Liu, S. Xu, X. Li, C. Zhang & L. Jiang, "Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy, vol. 62, pp. 638-644, 2019.
    [59] H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu, & Z. L. Wang, "Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy." Advanced Functional Materials, vol. 25, pp. 5691-5697, 2015.
    [60] B. Jin, B. M. Wilén & P. Lant, “Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge.” Chemical Engineering Journal, vol. 98(1-2), pp. 115-126, 2004.
    [61] S. H. Shin, Y. H. Kwon, Y. H. Kim, J. Y. Jung, M. H. Lee & J. Nah, “Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators.” ACS nano, vol. 9(4), pp. 4621-4627, 2015.
    [62] Y. J. Fan, X. S. Meng, H. Y. Li, S. Y. Kuang, L. Zhang, Y. Wu, Z. L. Wang & G. Zhu, “Stretchable porous carbon nanotube‐elastomer hybrid nanocomposite for harvesting mechanical energy.” Advanced Materials, vol. 29(2), pp. 1603115, 2017.
    [63] R. E. Russo, “Laser ablation.” Applied Spectroscopy, 49(9), 14A-28A, 1995.
    [64] V. L. Trinh, & C. K. Chung, “A Facile Method and Novel Mechanism Using Microneedle-Structured PDMS for Triboelectric Generator Applications.” small, vol. 13(29), pp. 1700373, 2017.
    [65] G. Cheng, H. Zheng, F. Yang, L. Zhao, M. Zheng, J. Yang, H. Qin, Z. Du & Z. L. Wang, “Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip–electrode air-discharging and application for UV sensing.” Nano Energy, vol. 44, pp. 208-216, 2018.
    [66] G. Cheng, Z. H. Lin, L. Lin, Z. Du & Z. L. Wang, “Pulsed nanogenerator with huge instantaneous output power density.” Acs Nano, vol. 7(8), pp. 7383-7391, 2013.
    [67] Y. Chen, D. Li, Y. Xu, Z. Ling, H. Nawaz, S. Chen & Feng Xu, “Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators.” International Journal of Biological Macromolecules, vol. 208, pp. 324-332, 2022.
    [68] Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z. H. Lin, Y. Su, P. Bai, X. Wen & Z. L. Wang, “Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system,” ACS nano, vol. 7, pp. 9461-9468, 2013.
    [69] M. Wang, J. Zhang, Y. Tang, J. Li, B. Zhang, E. Liang, Y. Mao & X. Wang, "Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring," ACS nano, vol. 12, pp. 6156-6162, 2018.
    [70] Y. Xie, S. Wang, L. Lin, Q. Jing, Z. H. Lin, S. Niu, Z. Wu & Z. L. Wang, “Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy.” ACS nano, vol. 7(8), pp. 7119-7125, 2013.
    [71] S. Li, S. Wang, Y. Zi, Z. Wen, L. Lin, G. Zhang & Z. L. Wang, “Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states.” ACS nano, vol. 9(7), pp. 7479-7487, 2015.
    [72] T. V. Heath, “A review of oscillating water columns.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 370(1959), pp. 235-245, 2012.
    [73] T. Whittaker & M. Folley, “Nearshore oscillating wave surge converters and the development of Oyster.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 370(1959), pp. 345-364, 2012.
    [74] Y. Li & Y. H. Yu, “A synthesis of numerical methods for modeling wave energy converter-point absorbers.” Renewable and Sustainable Energy Reviews, vol. 16(6), pp. 4352-4364, 2012.
    [75] A. Clément, P. McCullen, A. Falcão, A. Fiorentino, F. Gardner, K. Hammarlund, G. Lemonis, T. Lewis, K. Nielsen, S. Petroncini, M. T. Pontes, P. Schild, B. O. Sjöström, H. C. Sørensen & T. Thorpe, “Wave energy in Europe: current status and perspectives.” Renewable and sustainable energy reviews, vol. 6(5), pp. 405-431, 2002.
    [76] T. Whittaker, D. Collier, M. Folley, M. Osterried, A. Henry & M. Crowley, “The development of Oyster—a shallow water surging wave energy converter.” In Proceedings of the 7th European wave and tidal energy conference (pp. 11-14), 2007.
    [77] X. Wang, S. Niu, Y. Yin, F. Yi, Z. You & Z. L. Wang, “Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low‐frequency water wave energy.” Advanced Energy Materials, vol. 5(24), pp. 1501467, 2015.
    [78] L. Xu, T. Jiang, P. Lin, J. J. Shao, C. He, W. Zhong, X. Y. Chen & Z. L. Wang, “Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting.” ACS nano, vol. 12(2), pp. 1849-1858, 2018.
    [79] X. Wen, W. Yang, Q. Jing & Z. L. Wang, “Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS nano, vol. 8(7), pp. 7405-7412, 2014.
    [80] B. D. Chen, W. Tang, C. He, C. R. Deng, L. J. Yang, L. P. Zhu, J. Chen, J. J. Shao, L. Liu, Z. L. Wang, “Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator.” Materials today, vol. 21(1), pp. 88-97, 2018.
    [81] Z. Lin, J. Yang, X. Li, Y. Wu, W. Wei, J. Liu, & J. Yang, "Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring."Advanced Functional Materials, vol. 28(1), pp. 1704112, 2018.
    [82] H. Zhang, P. Zhang & W. Zhang, “A high-output performance mortise and tenon structure triboelectric nanogenerator for human motion sensing.” Nano Energy, vol. 84, pp. 105933, 2021.
    [83] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Q, Y. Su & Z. L. Wang, “Personalized keystroke dynamics for self-powered human-machine interfacing.” ACS nano, vol. 9(1), pp. 105-116, 2015.
    [84] S Niu, S Wang, L Lin, Y Liu, Y. S. Zhou, Y. Hua & Z. L. Wang, “Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.” Energy & Environmental Science, vol. 6(12), pp. 3576-3583, 2013.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE