簡易檢索 / 詳目顯示

研究生: 林子恩
Lin, Tzu-En
論文名稱: 以非平衡態分子動力學研究不同型態T型奈米碳管熱干涉效應
The Study on Thermal Interference Effect in Carbon Nanotube with Different T-junctions using Non-Equilibrium Molecular Dynamics
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 83
中文關鍵詞: 非平衡態分子動力學干涉熱流
外文關鍵詞: Non-Equilibrium Molecular Dynamics, Interference, Heat Flow
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以非平衡態分子動力學模擬方法探討T型奈米碳管的熱干涉效應,在T型碳管的兩分支末端分別放置冷熱區,藉由改變自由分支長度觀察冷熱端的熱流變化趨勢,考慮聲子波動性,將接頭處視為分光鏡將聲子分流、自由分支長度造成聲子路徑差,從聲子波動干涉的角度來探討其熱流變化。本論文首先介紹分子動力學的基礎理論和非平衡態分子動力學模擬方法的原理,然後介紹干涉的物理意義。在建立原子模型時,透過熱焊方式合成出不同缺陷型態的T型接頭,本研究將分別探討接頭之原子組態、控溫分支冷熱層位置、分支碳管長度和系統溫度,對冷熱端熱流的影響。
    本研究的模擬結果發現,即使在不同的系統溫度下(50K、300K、600K),自由分支長度對系統熱流影響非常小,並未觀察到聲子波動干涉效應,且低溫下的熱流值最高,在高溫時,熱流值震盪較明顯,應該是高溫熱擾動所造成;改變控溫分支的位置及不同接頭之原子組態下,熱流變化皆有相似的趨勢,但皆未觀察到熱干涉效應。最後以聲子態密度分析熱流在不同自由分支長度下的變化,進行討論,推論改變碳管自由分支長度對熱流影響不顯著,一個可能性為T型接頭上的缺陷破壞了聲子波動性,造成聲子散射;另一個可能性為熱流由不同波長之聲子所貢獻,改變路徑下,不同聲子相位差的能量總和相似,所以造成熱流變化不大。

    In this study, we used non-equilibrium molecular dynamics(NEMD) simulation to investigate the thermal interference effect in branched carbon nanotube(CNT) with T-junction. The cold and hot regions were placed at the end of two branches and the free branch length effect on the heat current were simulated. First, the atomic model of the T-junction was created by thermal welding at high temperature and T-junction models with different topological defects were constructed in order to study the junction atomic configuration effect. We also explored the temperature effect and the position of the temperature controlled region effect on heat current inside branched CNT.
    From our simulation, it was found that the free branch length of T-junction CNT did not affect the heat current noticeably, irrespective to the system temperature. At low temperature, i.e., 50K, the heat current value was higher as compared to those in higher temperatures. The heat current fluctuation was larger at high temperature, i.e., 600K, due to thermal perturbation. As for the junction atomic configuration as well as the position of temperature-controlled regions, we observed similar heat current dependence on free branch length. Overall, there was no thermal interference phenomena observed in our simulation. We attempted to perform analysis using phonon density of states (PDOS) on the branches to provide explanation for the heat current in the branched CNT. There were two possible postulations. One was that the topological defects at the junction destroyed the wave properties of phonons and most phonon transport became diffusive, instead of ballistic. The other was that the heat current was the total contribution of many phonons with various wavelengths. The summation of all the thermal energy carried by phonons with different phase differences would not show obvious dependence on the branch length.

    摘要 I Extended Abstract II 誌謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 理論與方法 8 2.1 分子動力學理論 8 2.1.1 基本理論 8 2.1.2 勢能函數 8 2.1.3 邊界條件 12 2.1.4 系綜觀念 13 2.1.5 控溫器 14 2.1.6 初始條件 15 2.2 有限差分法及表列法 16 2.2.1 Velocity-Verlet演算法 17 2.2.2 表列法 17 2.3 分子動力學計算熱導率 19 2.4 固態物理學理論 21 2.5 干涉 21 第三章 模型創建與模擬方法 27 3.1 模擬模型與工具 27 3.2 T型分支奈米碳管模型和模擬設置 28 3.2.1 建立T型分支奈米碳管模型 28 3.2.2 T型分支奈米碳管模擬配置 29 3.3 T型分支奈米碳管模擬流程 30 3.4 T型分支奈米碳管模擬結果 31 3.4.1 原子組態對熱流影響 31 3.4.2 溫度對熱流影響 32 3.4.3 自由層長度對熱流影響 32 3.4.4 控溫層位置對熱流影響 33 3.4.5 溫差對熱流影響 34 第四章 分析與討論 57 4.1 聲子態密度 57 第五章 結論 73 5.1 本文結論 73 5.2 未來展望 73 參考文獻 75 附錄A 79 附錄B 81

    [1]P. G. Collins and P. Avouris, "Nanotubes for electronics," Scientific American, vol. 283, pp. 62-69, 2000.
    [2]M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
    [3]M. Menon and D. Srivastava, "Carbon nanotube based molecular electronic devices," Journal of Materials Research, vol. 13, pp. 2357-2362, 1998.
    [4]Y. C. Choi and W. Choi, "Synthesis of Y-junction single-wall carbon nanotubes," Carbon, vol. 43, pp. 2737-2741, 2005.
    [5]S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
    [6]D. Zhou and S. Seraphin, "Complex branching phenomena in the growth of carbon nanotubes," Chemical Physics Letters, vol. 238, pp. 286-289, 1995.
    [7]B. Gan, J. Ahn, Q. Zhang, Rusli, S.F. Yoon, J. Yu, Q.-F. Huang, K. Chew, V.A. Ligatchev, X.-B. Zhang and W.-Z. Li, "Y-junction carbon nanotubes grown by in situ evaporated copper catalyst," Chemical Physics Letters, vol. 333, pp. 23-28, 2001.
    [8]F. Banhart, "The formation of a connection between carbon nanotubes in an electron beam," Nano Letters, vol. 1, pp. 329-332, 2001.
    [9]J.-M. Ting and C.-C. Chang, "Multijunction carbon nanotube network," Applied Physics Letters, vol. 80, pp. 324-325, 2002.
    [10]N. Gothard, C. Daraio, J. Gaillard, R. Zidan, S. Jin, and A. Rao, "Controlled growth of Y-junction nanotubes using Ti-doped vapor catalyst," Nano Letters, vol. 4, pp. 213-217, 2004.
    [11]Q. Liu, W. Liu, Z.-M. Cui, W.-G. Song, and L.-J. Wan, "Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods," Carbon, vol. 45, pp. 268-273, 2007.
    [12]F. Müller-Plathe, "A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity," The Journal of Chemical Physics, vol. 106, pp. 6082-6085, 1997.
    [13]A. Cummings, M. Osman, D. Srivastava, and M. Menon, "Thermal conductivity of Y-junction carbon nanotubes," Physical Review B, vol. 70, pp. 115405, 2004.
    [14]G. Wu and B. Li, "Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations," Physical Review B, vol. 76, pp. 085424, 2007.
    [15]E. G. Noya, D. Srivastava, and M. Menon, "Heat-pulse rectification in carbon nanotube Y junctions," Physical Review B, vol. 79, pp. 115432, 2009.
    [16]C. Ren, Z. Xu, W. Zhang, Y. Li, Z. Zhu, and P. Huai, "Theoretical study of heat conduction in carbon nanotube hetero-junctions," Physics Letters A, vol. 374, pp. 1860-1865, 2010.
    [17]J. Park, J. Lee, and V. Prakash, "Phonon scattering at SWCNT–SWCNT junctions in branched carbon nanotube networks," Journal of Nanoparticle Research, vol. 17, pp. 59, 2015.
    [18]X. Yang, D. Yu, B. Cao, and A. C. To, "Ultrahigh thermal rectification in pillared graphene structure with carbon nanotube–graphene intramolecular junctions," ACS Applied Materials & Interfaces, vol. 9, pp. 29-35, 2017.
    [19]B. J. Alder and T. E. Wainwright, "Studies in molecular dynamics. I. General method," The Journal of Chemical Physics, vol. 31, pp. 459-466, 1959.
    [20]J. E. Jones, "On the determination of molecular fields.—II. From the equation of state of a gas," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, pp. 463-477, 1924.
    [21]R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, and M. Dresselhaus, "Anomalous potential barrier of double-wall carbon nanotube," Chemical Physics Letters, vol. 348, pp. 187-193, 2001.
    [22]D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons," Journal of Physics: Condensed Matter, vol. 14, pp. 783, 2002.
    [23]D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Physical Review B, vol. 42, pp. 9458, 1990.
    [24]J. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods," Computers in Physics, vol. 7, pp. 625-625, 1993.
    [25]T. Dumitrica, "Trends in computational nanomechanics: transcending length and time scales," Springer Science & Business Media, 2010.
    [26]P. H. Hünenberger, "Thermostat algorithms for molecular dynamics simulations," Advanced Computer Simulation: Approaches for Soft Matter Sciences I, vol. 173, pp. 105-149, 2005.
    [27]G. Bussi, D. Donadio, and M. Parrinello, "Canonical sampling through velocity rescaling," The Journal of Chemical Physics, vol. 126, pp. 014101, 2007.
    [28]W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, vol. 31, pp. 1695-1697, 1985.
    [29]S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of Chemical Physics, vol. 81, pp. 511-519, 1984.
    [30]D. J. Evans and B. L. Holian, "The Nose–Hoover thermostat," The Journal of Chemical Physics, vol. 83, pp. 4069-4074, 1985.
    [31]H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, pp. 3684-3690, 1984.
    [32]S. A. Adelman and J. D. Doll, "Generalized Langevin equation approach for atom/solid‐surface scattering: General formulation for classical scattering off harmonic solids," The Journal of Chemical Physics, vol. 64, pp. 2375-2388, 1976.
    [33]T. Schlick, Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide. Springer Science & Business Media, 2010.
    [34]T. Schneider and E. Stoll, "Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions," Physical Review B, vol. 17, pp. 1302-1322, 1978.
    [35]G.-J. Hu and B.-Y. Cao, "Molecular dynamics simulations of heat conduction in multi-walled carbon nanotubes," Molecular Simulation, vol. 38, pp. 823-829, 2012.
    [36]L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review, vol. 159, pp. 98-103, 1967.
    [37]W. C. Swope, H. C. Andersen, P. H. Berens and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
    [38]B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, pp. 430-432, 1973.
    [39]T. N. Heinz and P. H. Hünenberger, "A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions," Journal of Computational Chemistry, vol. 25, pp. 1474-1486, 2004.
    [40]D. Frenkel and B. Smit, "Understanding molecular simulation, Second edition: From algorithms to applications," San Diego: Academic, 2002.
    [41]J. P. Hansen and I. R. McDonald, Theory of Simple Liquids. London: Academic, 1986.
    [42]K. C. Fang, C. I. Weng, and S. P. Ju, "An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations," Nanotechnology, vol. 17, pp. 3909-3914, 2006.
    [43]T. Ikeshoji and B. Hafskjold, "Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface," Molecular Physics, vol. 81, pp. 251-261, 1994.
    [44]P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of atomic-level simulation methods for computing thermal conductivity," Physical Review B, vol. 65, pp. 144306, 2002.
    [45]W. Humphrey, A. Dalke, and K. Schulten, "VMD: visual molecular dynamics," Journal of Molecular Graphics, vol. 14, pp. 33-38, 1996.
    [46]S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," Journal of Computational Physics, vol. 117, pp. 1-19, 1995.
    [47]M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, and P. Ajayan, "Molecular junctions by joining single-walled carbon nanotubes," Physical Review Letters, vol. 89, pp. 075505, 2002.
    [48]V. H. Crespi, "Relations between global and local topology in multiple nanotube junctions," Physical Review B, vol. 58, pp. 12671, 1998.
    [49]Z. Zhang, A. Kutana, A. Roy, and B. I. Yakobson, "Nanochimneys: topology and thermal conductance of 3D nanotube–graphene cone junctions," The Journal of Physical Chemistry C, vol. 121, pp. 1257-1262, 2017.
    [50]羅友威, "以非平衡態分子動力學研究完美及具分支構造奈米碳管之熱傳行為," 成功大學機械工程學系學位論文, 2016.
    [51]J. Shiomi and S. Maruyama, "Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes," Japanese Journal of Applied Physics, vol. 47, pp. 2005, 2008.

    無法下載圖示 校內:2026-01-01公開
    校外:2026-01-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE