| 研究生: |
連家慶 Lien, Jia-Ching |
|---|---|
| 論文名稱: |
雙管式熱交換器三角翼渦流產生器之設計研究 The Study on Designing the Delta Winglet Vortex Generators in Double-Pipe Heat Exchanger |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 拉凡格氏法 、熱交換器 、渦流產生器 、最佳化設計 |
| 外文關鍵詞: | Levenberg-Marquardt Method, Heat exchanger, Vortex generator, Optimal design |
| 相關次數: | 點閱:142 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用商業套裝軟體CFD-ACE+建立三角翼渦流產生器之三維模型,並透過拉凡格氏法(Levenberg-Marquardt Method)最佳化渦流產生器之外形參數,以提升熱交換器之效率為目的來反算出三角翼渦流產生器最佳化之形狀。
本研究以文獻[1]為設計基礎並將其延伸,探討三種不同參數設計,並使用反算設計問題預測最佳渦流產生器外形參數。案例一將渦流產生器之長度固定,預測寬度及仰角,並與文獻[1]之結論相比,探討其外形改變對效率影響之趨勢;案例二將渦流產生器之長度、寬度及仰角皆列為預測參數;案例三以案例二之最佳化結果為初始設計,將各組渦流產生器之仰角列為參數,探討其各組參數改變對效率之影響,以上案例設計目標皆為取得熱交換器之最大效率。
由統計分析的結果顯示,經過最佳化設計後之熱交換器與無放置渦流產生器之熱交換器相比,其平均紐賽數增加了322%,最大效率達到1.34,因此達到本文之雙管型熱交換器之三角翼渦流產生器最佳化設計的目標。
A three-dimensional design problem is carried out to study the thermal-hydraulic characteristic of a heat exchanger with the delta winglet vortex generator. The objective of this thesis is to utilize the commercial package CFD-ACE+ and the Levenberg-Marquardt Method (LMM). Results show that the width of the delta- wing(w), height-pitch ratio (c/P) and the angle of attack (α) remains critical. Therefore, those parameters are chosen as our variables.
The thesis is aimed to improve the thermal performance of heat exchanger among the identical flow condition. Case A is optimized based on the original design while the width of the delta-wing and the angle of attack as design variables. Case B is optimized based on the original design while the width of the delta-wing, height-pitch ratio and the angle of attack are considered as design variables. Case C is optimized based on Case B while the angle of each vortex generators are considered as design variables.
The results of statistical analysis indicates that the optimized designs of the heat exchanger compare to the design without vortex generator, the average Nusselt number is higher by 322% and the thermal performance factor reach 1.34. As a result, the performance of heat exchanger is obviously improved.
1. A.T.Wijayanta,I. Yaningsih, M. Aziz, T. Miyazaki, S. Koyama, “ Double-sided delta wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger” Appl.Therm.Eng.145,(2018),27–37.
2. M. Fiebig, “Vortices, generators, and heat transfer.”Chem. Eng. Res. Des.76,(1998),108–123.
3. S. Ferrouillat, P. Tochon, C. Garnier, H. Peerhossaini,” Intensification of heat transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity.” Appl. Therm. Eng.26,(2006),1820–1829.
4. H.A. Mohammed, H.A. Hasan, M.A. Wahid,”Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts.” Int. Commun. Heat Mass Transf.40,(2013),36–46.
5. N.M. Zade, S. Akar, S. Rashidi, J.A. Esfahani,”Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three-dimensional tube.”Appl. Therm. Eng.124 ,(2017),413–421.
6. L.S. Sundar, P. Bhramara, N.T.R. Kumar, M.K. Singh, A.C.M. Sousa,”Experimental heat transfer, friction factor and effectiveness analysis of Fe3O4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts.”Int. J. Heat Mass Transf.109,(2017),440–453.
7. C. Man, J.Hu. Xiaogang Lv, P. Sun, Y. Tang,”Experimental study on effect of heat transfer enhancement for single phase forced convective flow with twisted tape inserts.”Int. J. Heat Mass Transf.106,(2017),877–883.
8. M. Fiebig, A. Valencia, N.K. Mitra, ”Local heat transfer and flow losses in fin-tube heat exchangers with vortex generators: a comparison of round and flat tubes.”Exp. Heat Transf, Fluid Mech,(1993),337–344.
9. M.C. Gentry, A.M. Jacobi,”Heat transfer enhancement by delta-wing-generated tip vortices in flat-plate and developing channel flows.”Heat Transf.124 ,(2002),1158–1168.
10. K. Yakut, B. Sahin, C. Celik, N. Alemdaroglu, A. Kurnuc, “Effects of tapes with double-sided delta-winglets on heat and vortex characteristics.” Appl. Energy,80, (2005),77–95.
11. S. Eiamsa-ard, P. Promvonge, “Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube.” Chem. Eng,19, (2011),410–423.
12. C. H. Huang, J. J. Lu and H.C. Ay,“A three-dimensional heat sink module design algorithm with experimental verification.” International Journal of Heat and Mass Transfer, 54, (2011),1482-1492.
13. D. M. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters” J. Soc. Indust. Appl. Math.,11, (1963), 431-441.
14. CFD-ACE+ user’s manual, ESI-CFD Inc., (2016).
15. C. H. Huang, Y. H. Chen, “An impingement heat sink module design problem in determining simultaneously the optimal non-uniform fin widths and heights” International Journal of Heat and Mass Transfer,73, (2014),627-633.
16. J. P. van Doormal, G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows.” Numerical heat transfer,7, (1984),147–163.
17. B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows.”, Computer Methods in Applied Mechanics and Engineering,3, (1974),269–289.
18. D. B. Spalding, B. E. Launder, A. P. Morse, G. Maples, “Combustion of hydrogen-air jets in local chemical equilibrium (a guide to the CHARNAL computer program)”, NASA Contractor Reports, (1974).
19. S.K Saha, M. Tiwari, B. Sundén, Z. Wu, “Advances in Heat Transfer Enhancement” Springer: Cham, Switzerland, (2016).