簡易檢索 / 詳目顯示

研究生: 鄭宇翔
Cheng, Yu-Hsiang
論文名稱: 薄型板之吸音分析
Sound Absorption Analysis of Thin Panels
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 共振腔聲學阻抗吸音薄板聲學阻抗管
外文關鍵詞: Acoustic Cavity, Sound Absorption, 3D Printing
相關次數: 點閱:61下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 振動以及噪音汙染在現今的社會中已經是一項無法忽視的重大問題,如何有效隔離抑或是消除噪音為學業界近年致力解決的一大工程。本研究由推導聲波方程式配合阻抗匹配法以計算共振腔在各頻率下之吸音率曲線,並以等效介面方式計算介面之聲阻抗,並延伸推導不同模型,並對其求出合適之截面比;其減噪機制為共振腔在其共振頻率由於空氣高速流通下熱黏滯耗損聲能,而產生高度的吸音率。
    設計完模型後,再以有限元素模擬軟體COMSOL Multiphysics計算理想情況中共振腔在各頻率之吸音率,引入有效長度修正項,以曲線擬合之方式求得其值;而本篇研究有限元素模擬直管對阻抗匹配理論之修正項幾乎皆為0.35。
    模型之設計也延續蜷曲式共振腔吸音薄板之概念結合如等效電路、精簡幾何等方式以拓展頻寬、提高吸音薄板之空間使用率,節省材料之同時提高吸音效果,並運用三維列印的高客製性進行製作,實驗上各模型都有最高達0.9以上之吸音率,雖然僅在有限頻寬才有此高度吸收率,卻是常見之吸音多孔性材料難以企及。實驗上和有限元素模擬仍存如蜷曲管以及三維列印造成粗糙度之差異,使得修正項有所差異,但頻寬以及吸音率曲線趨勢仍可透過使用合適之修正項而疊合(實驗大部分修正項為0.15),驗證能以阻抗匹配理論預測吸音薄板吸音率之曲線趨勢。

    Vibration and noise pollution have become a problem that cannot be ignored. How to effectively isolate or eliminate noise becomes a major research subject nowadays. In this study, the impedance matching method and finite element method are used to capture the sound absorption of the thin panel with a resonant cavity. The noise reduction mechanism is attributed to the thermal and viscous loss of acoustic energy as the resonant behavior of the cavity occurs. The resonant cavity of the sound absorbing panel is coiled up for space-save purpose. The 3D printing technique is utilized to fabricate the designed structure. The experimental results show that the sound absorption of the present panel is up to 0.9 or higher. With the proper correction of the tube length, the numerical results obtained by impedance matching method can perfectly match the ones obtained by experiments.

    中文摘要 I Extend Abstract II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 符號 XVI 第一章 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 章節介紹 3 第二章 基本聲學理論 4 2.1 聲波方程式[11, 12] 4 2.1.1 狀態方程式(Equation of state) 4 2.1.2 連續方程式(Continuity equation) 5 2.1.3 動量方程式(Momentum equation) 6 2.1.4 聲波方程式 7 2.2 阻抗匹配法[13, 14] 8 2.3 阻抗匹配法計算吸收率[13] 11 2.4 平面聲波在狹管聲學阻抗[6] 12 2.5 亥姆霍茲共振器[14, 15] 13 2.6 雙麥克風轉移函數法與吸收率[17] 15 第三章 有限元素模擬分析 17 3.1 聲熱效應方程式 17 3.2 四分之一波長共振腔吸音率分析 18 3.2.1 模型設計與邊界條件 18 3.2.2 收斂分析 21 3.2.3 模擬結果 22 3.2.4 曲線擬合阻抗匹配理論修正[19, 20] 25 3.3 等效並聯共振腔吸音率分析 28 3.3.1 有限元素法模擬結果 28 3.3.2 有限元素法和修正阻抗匹配法吸音率比較 31 3.4 亥姆霍茲共振腔吸音率分析 34 3.4.1 有限元素法模擬結果 34 3.4.2 有限元素法和阻抗匹配法吸音率比較 37 3.5 混合型共振腔吸音率分析 39 3.5.1 有限元素法模擬結果 40 第四章 吸音薄板吸音率實驗及比較 45 4.1 吸音薄板吸音率實驗 45 4.1.1 阻抗管量測 45 4.1.2 吸音薄板製作 47 4.2 四分之一波長共振腔吸音薄板實驗 49 4.3 等效並聯共振腔吸音薄板實驗 51 4.4 亥姆霍茲共振腔吸音薄板實驗 53 4.5 混合型共振腔吸音薄板實驗 55 4.6 實驗結果整理 61 第五章 結論 62 參考文獻 63 附錄一 吸音阻抗管SW422 65

    [1] 盧博堅 和 劉嘉俊, 噪音控制與防制, 滄海, 台中市, 2011.
    [2] H. Von Helmholtz and A. J. Ellis, On the Sensations of Tone as a Physiological Basis for the Theory of Music, Longmans, Green and Company, London, 1875.
    [3] P. Tang and W. Sirignano, Theory of a generalized Helmholtz resonator, J. sound Vib., vol. 26, no. 2, pp. 247-262, 1973.
    [4] R. Chanaud, Effects of geometry on the resonance frequency of Helmholtz resonators, J. sound Vib., vol. 178, no. 3, pp. 337-348, 1994.
    [5] A. Selamet and I. Lee, Helmholtz resonator with extended neck, J. Acoust. Soc. Am., vol. 113, no. 4, pp. 1975-1985, 2003.
    [6] M. R. Stinson, The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape, J. Acoust. Soc. Am., vol. 89, no. 2, pp. 550-558, 1991.
    [7] S. Griffin, S. A. Lane, and S. Huybrechts, Coupled Helmholtz resonators for acoustic attenuation, J. Vib. Acoust, vol. 123, no. 1, pp. 11-17, 2001.
    [8] C. H. Sohn and J. H. Park, A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators, Aerosp. Sci. Technol., vol. 15, no. 8, pp. 606-614, 2011.
    [9] X. Cai, Q. Guo, G. Hu, and J. Yang, Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett., vol. 105, no. 12, p. 121901, 2014.
    [10] C. Chen, Z. Du, G. Hu, and J. Yang, A low-frequency sound absorbing material with subwavelength thickness, Appl. Phys. Lett., vol. 110, no. 22, p. 221903, 2017.
    [11] L. E. Kinsler, A. R. Frey, H. Coppens, J. V. Sanders, and H. Saunders, Fundamentals of acoustics, John Wiley & Sons, Inc., New York , 1983.
    [12] 廖翊涵, 四分之一波長共振腔之寬頻吸音薄板研究, 臺灣大學應用力學研究所碩士學位論文, 2017.
    [13] J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials 2e, John Wiley & Sons, Inc., New York, 2009.
    [14] 白明憲, 工程聲學, 全華圖書股份有限公司, 台北市, 2006.
    [15] R. L. Panton and J. M. Miller, Resonant frequencies of cylindrical Helmholtz resonators, J. Acoust. Soc. Am., vol. 57, no. 6, pp. 1533-1535, 1975.
    [16] J. Baron Rayleigh, On the theory of resonance, Philos. Trans., vol. 161, pp. 77-118, 1871.
    [17] M. Wolkesson, Evaluation of impedance tube methods-A two microphone in-situ method for road surfaces and the three microphone transfer function method for porous materials, Master's thesis, Chalmers University of Technology, Goteborg, 2013.
    [18] J. Cordioli, G. Martins, P. Mareze, and R. Jordan, A comparison of models for visco-thermal acoustic problems, J. Acoust. Soc. Am., vol.127, no.3, pp. 6992-7001, 2010.
    [19] T. Boelkes and I. Hoffmann, Pipe diameter and end correction of a resonant standing wave, ISB J. Phys., vol. 5, pp. 1-3, 2011.
    [20] S. R. Iqbal and H. M. A. Majeed, End correction of a resonant standing wave in open pipes of different diameters, J. Nat. Sci. Res., vol. 3, no. 4, pp. 21-25, 2013.
    [21] EN ISO 10534-2, Determination of sound absorption coefficient and acoustic impedance with the interferometer, Part2: Transfer function method, British Standard Institution, London.

    無法下載圖示 校內:2024-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE