| 研究生: |
曾偉軒 Zeng, Wei-Syuan |
|---|---|
| 論文名稱: |
利用化學合成法製造錳與金相關之奈米粒子 Chemical Synthesis of Mn- and Au-based Nanoparticles |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 化學合成法 、金奈米粒子 、氣體治療 、自供過氧化氫化學動力治療 、飢餓療法 、一氧化碳治療 |
| 外文關鍵詞: | chemical synthesis, gold nanorods, gold nanocubes, chemodynamic therapy, starvation therapy, CO therapy |
| 相關次數: | 點閱:81 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在金奈米粒子(Gold nanoparticles,GNPs)的製造中,物理法與化學法是最為常見的方法,本篇利用化學還原合成法合成出尺寸超過一百奈米的奈米金立方體(Gold nanocubes,GNCs)與奈米金棒(Gold nanorods,GNRs),並期望其在未來有抗血管生長治療的效果。
同時,近年在癌症治療中的新興藥物,葡萄糖氧化酶(Glucose oxidase,GOx) 藉由消耗細胞中葡萄糖產生雙氧水的特性,使其在達到飢餓治療之外,更可以藉由雙氧水和其他藥物產生協同治療,例如:Fenton reaction、Fenton-like reaction中雙氧水和金屬離子反應產生活性氧物質(Reactive oxygen species,ROS)達到化學動力治療 (Chemodynamic Therapy),又或者與一氧化碳釋放材料(Carbon monoxide releasing materials,CORM)反應產生出的一氧化碳(CO),來達到CO治療。
除此之外,利用化學合成法中的熱裂解,製造出氧化錳奈米粒子(Manganese Monoxide Nanoparticles,MnO),並在外層修飾具孔洞的二氧化矽層(SiO2)與GOx ,且在孔洞中裝載五羰基鐵(Fe(CO)5)作為CORM。在癌細胞的酸性環境下,中心的MnO會被酸蝕並釋放出錳離子(Mn2+),而GOx消耗葡萄糖產生的H2O2與Mn2+和Fe(CO)5反應,達到飢餓治療與化學動力治療的效果。
In the present works, we have used chemical reduction method to make two different shapes of gold nanoparticles, namely gold nanorods (GNRs) and gold nanocubes (GNCs). Moreover, using thermal decomposition method manganese monoxide nanoparticles (MnO) were synthesized. Both gold nanoparticles size were bigger than 100 nm, because of those special size, it might have application on anti-angiogenic therapy. In another part, we designed a nanoformulation combining manganese monoxide, glucose oxidase (GOx) and Fe(CO)5, for synergistic therapeutic effect by combining chemodynamic therpay (CDT), starvation therapy and CO gas therapy. First, GOx would consume glucose from cell not only had starvation therapy but also produced hydrogen peroxide (H2O2) and hydrogen ions (H+). Subsequently the acidic condition would let MnO be etched and release Mn2+. Furthermore, H2O2 would reacted with Mn2+ and Fe(CO)5, thereby leading to chemodynamic therpay and CO gas therapy, respectively.
1. Gaspar, D., et al., Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci Rep 2013. 3: 1469.
2. Bailly, A.L., et al., In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep 2019. 9(1): 12890.
3. Pislova, M., et al., A new way to prepare gold nanoparticles by sputtering - Sterilization, stability and other properties. Mater Sci Eng C Mater Biol Appl 2020. 115: 111087.
4. Daruich De Souza, C., B. Ribeiro Nogueira, and M.E.C.M. Rostelato, Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. Journal of Alloys and Compounds 2019. 798: 714-740.
5. Vais, R.D., N. Sattarahmady, and H. Heli, Green electrodeposition of gold nanostructures by diverse size, shape, and electrochemical activity. Gold Bulletin 2016. 49(3-4): 95-102.
6. Jin, Y., et al., Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007. 302(1-3): 366-370.
7. Ortiz-Castillo, J.E., et al., Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coordination Chemistry Reviews 2020. 425.
8. Wu, H.L., C.H. Kuo, and M.H. Huang, Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 2010. 26(14): 12307-13.
9. Huang, C.-J., et al., Electrochemical synthesis of gold nanocubes. Materials Letters 2006. 60(15): 1896-1900.
10. Thiele, M., et al., Combination of microfluidic high-throughput production and parameter screening for efficient shaping of gold nanocubes using Dean-flow mixing. Lab Chip 2017. 17(8): 1487-1495.
11. Park, J.E., Y. Lee, and J.M. Nam, Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering. Nano Lett 2018. 18(10): 6475-6482.
12. Meena, S.K., et al., The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Phys Chem Chem Phys 2016. 18(19): 13246-54.
13. Ding, B., et al., Manganese Oxide Nanomaterials: Synthesis, Properties, and Theranostic Applications. Adv Mater 2020. 32(10): e1905823.
14. Audrito, V., et al., NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Front Immunol 2019. 10: 1720.
15. Thakkar, S., et al., Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater 2020. 101: 43-68.
16. Abdalla, A.M.E., et al., Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics. Theranostics 2018. 8(2): 533-548.
17. Arvizo, R.R., et al., Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine 2011. 7(5): 580-7.
18. Balakrishnan, S., et al., Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 2016. 49(6): 678-697.
19. Shen, N., et al., Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int J Ophthalmol 2018. 11(8): 1269-1276.
20. Darweesh, R.S., N.M. Ayoub, and S. Nazzal, Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomedicine 2019. 14: 7643-7663.
21. Wang, X., et al., Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 2020. 35.
22. Fu, P.P., et al., Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 2014. 22(1): 64-75.
23. Cui, R., J. Shi, and Z. Liu, Metal-organic framework-encapsulated nanoparticles for synergetic chemo/chemodynamic therapy with targeted H2O2 self-supply. Dalton Trans 2021. 50(43): 15870-15877.
24. Ma, B., et al., Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H2O2 Sequentially Triggered Chemodynamic Therapy. J Am Chem Soc 2019. 141(2): 849-857.
25. Chen, T., et al., Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. J Nanobiotechnology 2021. 19(1): 206.
26. Dharmaraja, A.T., Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem 2017. 60(8): 3221-3240.
27. Lin, L.S., et al., Simultaneous Fenton-like Ion Delivery and Glutathione Depletion by MnO2 -Based Nanoagent to Enhance Chemodynamic Therapy. Angew Chem Int Ed Engl 2018. 57(18): 4902-4906.
28. Wang, P., et al., Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy. ACS Appl Mater Interfaces 2019. 11(44): 41140-41147.
29. Lin, L.-S., et al., Synthesis of Copper Peroxide Nanodots for H2O2 Self-Supplying Chemodynamic Therapy. Journal of the American Chemical Society 2019. 141(25): 9937-9945.
30. Gao, S., et al., Self-Supply of O2 and H2O2 by a Nanocatalytic Medicine to Enhance Combined Chemo/Chemodynamic Therapy. Adv Sci (Weinh) 2019. 6(24): 1902137.
31. Fu, L.H., et al., Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem Soc Rev 2018. 47(17): 6454-6472.
32. Cheng, K., et al., A novel pH-responsive hollow mesoporous silica nanoparticle (HMSN) system encapsulating doxorubicin (DOX) and glucose oxidase (GOX) for potential cancer treatment. Journal of Materials Chemistry B 2019. 7(20): 3291-3302.
33. Zhang, T., et al., Glucose oxidase and polydopamine functionalized iron oxide nanoparticles: combination of the photothermal effect and reactive oxygen species generation for dual-modality selective cancer therapy. J Mater Chem B 2019. 7(13): 2190-2200.
34. Fu, L.H., et al., Biodegradable Manganese-Doped Calcium Phosphate Nanotheranostics for Traceable Cascade Reaction-Enhanced Anti-Tumor Therapy. ACS Nano 2019. 13(12): 13985-13994.
35. Jing, Y.Z., S.J. Li, and Z.J. Sun, Gas and gas-generating nanoplatforms in cancer therapy. J Mater Chem B 2021. 9(41): 8541-8557.
36. Wang, Y., T. Yang, and Q. He, Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl Sci Rev 2020. 7(9): 1485-1512.
37. Chance, B., M. Erecinska, and M. Wagner, Mitochondrial responses to carbon monoxide toxicity. Annals of the New York Academy of Sciences 1970. 174(1): 193-204.
38. Kautz, A.C., P.C. Kunz, and C. Janiak, CO-releasing molecule (CORM) conjugate systems. Dalton Trans 2016. 45(45): 18045-18063.
39. Wang, X.S., et al., Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS Nano 2020. 14(8): 9848-9860.
40. Jin, Z., et al., Intratumoral H2O2-triggered release of CO from a metal carbonyl-based nanomedicine for efficient CO therapy. Chem Commun 2017. 53(40): 5557-5560.
41. McGlynn, S.E., et al., Hydrogenase cluster biosynthesis: organometallic chemistry nature's way. Dalton Trans 2009(22): 4274-85.
42. Pellas, V., et al., Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. Biosensors (Basel) 2020. 10(10).
43. Wu, W.T., et al., Effect of Surface Coverage of Gold Nanoparticles on the Refractive Index Sensitivity in Fiber-Optic Nanoplasmonic Sensing. Sensors (Basel) 2018. 18(6).