簡易檢索 / 詳目顯示

研究生: 洪頤謙
Hung, Yi-Chien
論文名稱: 具柔軟或剛性圓柱內核之二相超材料的局部共振行為
Local resonant behavior of two-phase metasolids containing either soft or hard cylindrical inclusions
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 166
中文關鍵詞: 地震超材料圓柱二相超材料局部共振等效模數帶隙
外文關鍵詞: seismic metamaterials, cylindrical two-phase metamaterials, local resonance, equivalent modulus, bandgaps
相關次數: 點閱:12下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於架構較完整、研究較為深入的三相地震超材料,二相結構雖亦具備一定程度的能量消散能力,但目前相關探討仍相對零散,缺乏系統性分析與理論整合。為提升二相結構於實務應用上的可行性,本文旨在釐清其可能呈現之幾何型態、主要影響參數所引發的效應,以及與三相結構在等效模數上的差異,和過去研究不同,也拓展分析二相不同模態之行為,如轉動及軸向移動等。因此本研究參考最近研究的相關成果,將二相材料歸納為兩類結構型態:其一為「內軟外硬」結構,內核由柔軟材料構成,外層為剛性基材;其二為「內硬外軟」結構,則以剛性內核搭配具彈性的基材。本文透過解析解推導與有限元素模擬,建立二相結構與三相模型之間的幾何轉換關係,並從理論角度探討各模態下局部共振頻率及帶隙變化之原因。接著本文亦分析在常見地震超材料尺度與材料條件下,兩種二相結構於不同模態所產生的帶隙範圍,並利用半全域模擬方法探討其對縱波與剪切波之衰減效果。根據模擬與理論結果,進一步探討如何透過幾何與材料參數調整以強化二相結構之消能能力,並指出可能面臨的實務限制。
    綜合而言,本文透過理論與模擬方法展示了二相圓柱超材料在地震波控制上的應用潛力。然而若欲達到可媲美甚至超越三相結構之消能效果,往往需倚賴特定極端材料性質與幾何尺度,導致其設計彈性與材料選用受到限制。此亦為未來二相地震超材料應用與設計上亟需克服的挑戰。

    Compared to the well-developed three-phase seismic metamaterials, two-phase structures also possess wave attenuation capability but have received less systematic attention. This study aims to clarify the geometric configurations, key influencing parameters, and differences in equivalent modulus between two- and three-phase designs. Unlike previous research, it further extends the analysis to multiple vibration modes, including rotational and axial motions. Two typical two-phase types are considered: soft-core–hard-matrix and hard-core–soft-matrix structures. Analytical derivations and finite element simulations are employed to establish the geometric transition between two- and three-phase models and to investigate the origins of local resonance and bandgap formation under various modes. The bandgap ranges and attenuation effects for longitudinal and shear waves are evaluated under typical seismic metamaterial scales using semi-global simulations. Results demonstrate the potential of cylindrical two-phase metamaterials in seismic wave control. However, achieving comparable performance to three-phase systems often requires extreme material properties or geometric conditions, limiting design flexibility. These findings highlight both the application potential and the challenges that must be addressed for the practical deployment of two-phase seismic metamaterials.

    中文摘要 i Abstract iii 誌謝 xi 目錄 xiii 表目錄 xvi 圖目錄 xvii 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 2 1.3 論文簡介 3 第二章 內軟外硬之圓柱二相超材料 5 2.1 內軟外硬二相之圓柱超材料模型介紹 5 2.2 Helmholtz decomposition通解推導 6 2.3 平移模態-內軟外硬二相等效質量密度解析解 12 2.4 轉動模態-內軟外硬二相等效轉動慣量解析解 17 2.5 軸向移動模態-內軟外硬二相等效質量密度解析解 21 2.6 內軟外硬二相材料參數分析 25 2.6.1 絕對尺度影響 28 2.6.2 體積比參數 (χ=b/L ) 之影響 30 2.6.3 密度參數 (ξ=ρ1/ρ2) 影響 34 2.6.4 波松比參數 (η=h/κ) 影響 37 第三章 三相解析解與內軟外硬二相行為比較 43 3.1 簡化三相理論模型之介紹 43 3.2 Helmholtz decomposition通解推導 44 3.3 平面移動模態-等效質量密度解析解 47 3.4 轉動模態-等效轉動慣量解析解 55 3.5 軸向移動模態-等效質量密度解析解 60 3.6 內軟外硬之二相之驗證 65 3.7 幾何變換關係­內軟外硬之二相 68 3.7.1 內核密度遠大於包覆層 68 3.7.2 內核密度略大包覆層 71 第四章 內硬外軟之圓柱二相超材料 75 4.1 內硬外軟二相之圓柱超材料模型介紹 75 4.2 等效質量密度解析解(Ru, 2022) 76 4.3 內硬外軟二相之有限元素分析 80 4.3.1 等效質量密度 80 4.3.2 等效轉動慣量 85 4.4 平面波展開法與內硬外軟二相 91 4.5 幾何變換關係­內軟外硬之二相 95 第五章 常見地震超材料組合及圓柱二相半全域模擬 101 5.1 圓柱二相超材料之幾何尺寸及使用材料參數 101 5.2 內軟外硬等效模數分析 104 5.3 內硬外軟等效模數分析 108 5.4 內軟外硬二相之半全域模擬 112 5.5 內硬外軟二相之半全域模擬 118 第六章 結論與未來展望 123 6.1 結論 123 6.2 未來展望 124 參考文獻 127 附錄A : 內質量系統公式推導(Bonnet & Monchiet, 2015) 131 附錄B : 二維二相圓柱平面波展開法推導 135

    Abramowitz, M., & Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Tenth Printing (1972).
    Bloch, F., Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik, 52(7-8), 555-600 (1929).
    Bonnet, G., & Monchiet, V., Dynamic mass density of resonant metamaterials with homogeneous inclusions. The Journal of the Acoustical Society of America 142(2), 890–901 (2017).
    Bonnet, G., & Monchiet, V., Low frequency locally resonant metamaterials containing composite inclusions. The Journal of the Acoustical Society of America 137(6), 3263–3271 (2015).
    Brillouin, L., Wave propagation in periodic structures: electric filters and crystal lattices (Vol. 2): Dover publications (1953).
    Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. International Journal of Solids and Structures, 43(3), 475-496 (2006).
    Chamis, C. C., Mechanics of composite materials: past, present, and future J. Compos. Tech. Res. 11(1), 3–14 (1989).
    Dal Poggetto, V. F., & Serpa, A. L., Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. International Journal of Mechanical Sciences 184, 105841 (2020).
    Du, Q., Zeng, Y., Huang, G., and Yang, H., Elastic metamaterial-based seismic shield for both Lamb and surface waves. AIP Advances, 7, 075015 (2017).
    England, A. H., Complex Variable Methods in Elasticity. Wiley-Interscience, London (1971).
    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X., Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456 (2006).
    Favier, E., Nemati, N., & Perrot, C., Two-component versus three-component metasolids. The Journal of the Acoustical Society of America 148, 3065-3074 (2020).
    Favier, E., Nemati, N., Perrot, C., & He, Q. C., Generalized analytic model for rotational and anisotropic metasolids. Journal of Physics Communications 2, 035035 (2018).
    Graff, K. F., Wave Motion in Elastic Solids. (Courier Corporation, 2012).
    Hill, R., Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 11, 357-372 (1963).
    Huang, W. H., Lin, Z. Y., & Chen, T. Y., Energy attenuation of seismic metamaterials composed of a periodic array of coated elliptical cylinders. Journal of Mechanics, 40, 491–504 (2024).
    Kushwaha, M. S., Halevi, P., Martinez, G., Dobrzynski, L., & Djafari-Rouhani, B., Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313 (1994).
    Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K., Composite acoustic medium with simultaneously negative density and modulus. Physical Review Letters, 104(5), 054301 (2010).
    Liu, Z., Chan, C. T., & Sheng, P., Analytic model of phononic crystals with local resonances. Physical Review B 71, 014103 (2005).
    Liu, X. N., Hu, G. K., Huang, G. L., & Sun, C. T., An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters 98, 251907 (2011a).
    Liu, X.-N., Hu, G.-K., Huang, G.-L., & Sun, C.-T., An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters, 98(25) (2011b).
    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity. (New York: Dover) (1944).
    Ru, C. Q., On local resonance of fiber-reinforced elastic metacomposites. Extreme Mechanics Letters, 56, 101851 (2022).
    Pendry, J. B., Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966 (2000).
    Pendry, J. B., Holden, A., Stewart, W., & Youngs, I., Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773 (1996).
    Sadd, M. H., Elasticity: Theory, Applications, and Numerics (4th ed.). Academic Press (2020).
    Veselago, V. G., Electrodynamics of substances with simultaneously negative and. Usp. Fiz. Nauk, 92(7), 517 (1967).
    李冠慧,地震超材料設計之減震模擬及效益評估,成功大學土木工程學系碩士論文(2019)。
    彭昱翔,週期性微極彈性材料之等效模數數值模擬,成功大學土木工程學系碩士論文(2014)。
    寧彥傑,具負等效質量慣性矩之微極彈性模型設計,成功大學土木工程學系碩士論文(2016)。
    林宗穎,週期排列之橢圓及粽子結構超材料之共振帶隙與消能機制,成功大 學土木工程學系碩士論文(2023)。
    張閎睿,週期排列之圓形和圓球形兩相超材料,成功大學土木工程學系碩士論文(2024)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE