| 研究生: |
賴俊錡 Lai, Jiun-Chi |
|---|---|
| 論文名稱: |
銅薄膜上之奈米銀及其表面增強拉曼散射分子感測器 Silver Nano-particles on Copper Thin Films for Surface Enhanced Raman Scattering Based Molecular Sensors |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 表面增強拉曼 、石墨 、銀金屬粒子 |
| 外文關鍵詞: | SERS, graphite, silver, nano-particles, graphene, R6G, adenine. |
| 相關次數: | 點閱:44 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯為單原子層的石墨,是一種二維結構的材料,擁有優異的載子遷移率和場效特性等,其中石墨烯為穩定碳材料具備生物相容性,因此也在生物醫學檢測方面成為熱門的研究。
其中石墨烯用於表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)技術被快速發展,因此本文提出石墨複合銀金屬電漿子結構於銅模UNCD基板製作術,以熱化學氣相沉積法在鍍銅膜的UNCD基板上成長石墨結構,隨後以銀反應液進行無極電鍍,由於自由能差異會在沒有石墨的間隙內沉積銀金屬花瓣奈米顆粒,並成功量測到戴不同電性的兩種分子,分別是腺嘌呤和羅明丹,在雷射光激發下顆粒間電場相互耦合並增強物理機制,而石墨烯可以藉由螢光淬滅與ππ*吸引待測分子提供增強化學機制,兩機制互輔互成為此基板高表現建立基礎。
Graphene is a monoatomic layer of graphite. It is a two-dimension structural material with excellent carrier mobilities and field effect characteristics. Graphene is also a biocompatible carbon material for biomedical measurement and research.
Among applications of carbon materials to surface enhanced Raman scattering (SERS), graphene assisted SERS has been rapidly developed. Therefore, graphene-silver plasmonic coupling structure is proposed using copper film on UNCD substrates with graphene deposition by thermal chemical vapor deposition.
[1] H. W. Kroto., et al., C60: Buckminsterfullerene. Nature volume 318, pages 162–163 (14 November 1985)
[2] Sumio Iijima., et al., Helical microtubules of graphitic carbon. Nature volume 354, pages 56–58 (07 November 1991
[3] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669
[4] 朱宏伟., et al., 石墨烯:单原子层二维碳晶体——2010年诺贝尔物理学奖简介. Cinese Journal of Nature, 2010, 32(6): p. 326~331
[5] Katsnelson, Mikhail I. "Graphene: carbon in two dimensions." Materials today10.1 (2007): 20-27
[6] Seol, J.H., et al., Two-dimensional phonon transport in supported graphene. Science, 2010. 328(5975): p. 213-216.
[7] Lee, Changgu, et al. "Measurement of the elastic properties and intrinsic strength of monolayer graphene." science 321.5887 (2008): 385-388.
[8] Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
[9] Iyechika, Y., Application of graphene to high-speed transistors: expectations and challenges. Sci. Technol. Trends, 2010. 37: p. 76-92.
[10] Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9): p. 538-42.
[11] Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
[12] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. Large- area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314, 2009.
[13] Obraztsov, A. N., et al. "Chemical vapor deposition of thin graphite films of nanometer thickness." Carbon 45.10 (2007): 2017-2021.
[14] Su, C. Y., Lu, A. Y., Wu, C. Y., Li, Y. T., Liu, K. K., Zhang, W., ... & Li, L. J. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano letters, 11(9), 3612-3616, 2011.
[15] Li, X., Cai, W., Jung, I. H., An, J. H., Yang, D., Velamakanni, A., ... & Ruoff, R.S. Synthesis, characterization, and properties of large-area graphene films. ECS Transactions, 19(5), 41-52, 2009.
[16] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... & Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 9(12), 4359-4363, 2009.
[17] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J. Roll-to- roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574-578, 2010.
[18] de la Rosa, C. J. L., Sun, J., Lindvall, N., Cole, M. T., Nam, Y., Löffler, M., ... & Yurgens, A. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters, 102(2), 022101, 2013.
[19] Ling, Xi, and Jin Zhang. "First‐Layer Effect in Graphene‐Enhanced Raman Scattering."Small 6.18 (2010): 2020-2025.
[20] Li, Xuesong, et al. "Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper." Journal of the American Chemical Society 133.9 (2011): 2816-2819.
[21] Zhang, Zhiyong, et al. "Direct extraction of carrier mobility in graphene ield-effect transistor using current-voltage and capacitance-voltage easurements." Applied Physics Letters 101.21 (2012): 213103.
[22] Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov,S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. Acs Nano, 5(7), 6069-6076, 2011.
[23] Zhu, H., et al., One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor. Carbon, 2016. 100: p. 201-207.
[24] Luo, B., et al., Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater, 2014. 26(20): p. 3218-24.
[25] Chiang, C.W., et al., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl Mater Interfaces, 2016. 8(1): p. 466-71.
[26] Maultzsch, J., et al., Phonon dispersion in graphite. Physical review letters, 2004. 92(7): p. 075501.
[27] Dresselhaus, M., A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010. 1(1): p. 89-108.
[28] Ferraro, J.R., Introductory raman spectroscopy. 2003: Academic press.
[29] Colthup, N., Introduction to infrared and Raman spectroscopy. 2012: Elsevier.
[30] Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. 2007: Thomson Brooks/Cole
[31] T. Deschaines et al Thermo Fisher Scientific, Madison, WI, USA
[32] Kittel, C., Introduction to solid state physics. 2005: Wiley
[33] https://depts.washington.edu/ntuf/facility/.../NTUF-Raman-Tutorial.pdf
[34] Malard, L. M., et al. "Raman spectroscopy in graphene." Physics Reports473.5 (2009): 51-87.
[35] Malard, L., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5): p. 51-87.
[36] http://www2.ess.nthu.edu.tw/news/images/pic/2007.10.24.pdf
[37] Xie, L., et al., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J Am Chem Soc, 2009. 131(29): p. 9890-1.
[38] Liu, C.-Y., et al., Plasmonic coupling of silver nanoparticles covered by hydrogenterminated graphene for surface-enhanced Raman spectroscopy. Optics express, 2011. 19(18): p. 17092-17098.
[39] He, X. N., Gao, Y., Mahjouri-Samani, M., Black, P. N., Allen, J., Mitchell, ., ... & Lu, Y. F. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 23(20), 205702, 2012.
[40] Xu, W., et al., Surface enhanced Raman spectroscopy on a flat graphene surface. Proc Natl Acad Sci U S A, 2012. 109(24): p. 9281-6.
[41] He, S., Liu, K. K., Su, S., Yan, J., Mao, X., Wang, D., ... & Fan, C. Graphene- based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Analytical chemistry, 84(10), 4622- 4627, 2012
[42] Matz, D.L., et al., Signature Vibrational Bands for Defects in CVD Single-Layer Graphene by Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett, 2015. 6(6): p. 964-9.
[43] Yoon, J.-C., et al., A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Adv., 2015. 5(77): p. 62772-62777.
[44] Zhao, Y., et al., Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids. Chem Commun (Camb), 2015. 51(5): p. 866-9.
[45] Guo, J., et al., Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system 105 for homogeneous, long-term stable and sensitive SERS activity. Applied Surface Science, 2017. 396: p. 1130-1137.
[46] Li, Z., et al., High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si. Sci Rep, 2016. 6: p. 38539.
[47] Zhao, Y., et al., Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Nanoscale, 2017. 9(3): p. 1087-1096.
[48] Jaroslav V. Burda., et al., Ab Initio Study of the Interaction of Guanine and Adenine with Various Mono- and Bivalent Metal Cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). J. Phys. Chem. 1996, 100, 7250-7255
[49] Scott G. Harroun., et al., The Controversial Orientation of Adenine on Gold and Silver. ChemPhysChem 2018, 19, 1003 – 1015
[50] Kan Zhang., et al., Interaction of Rhodamine 6G molecules with graphene: a combined computational experimental study. Phys. Chem. Chem. Phys., 2016, 18, 28418--28427
校內:2023-07-11公開