簡易檢索 / 詳目顯示

研究生: 賴俊錡
Lai, Jiun-Chi
論文名稱: 銅薄膜上之奈米銀及其表面增強拉曼散射分子感測器
Silver Nano-particles on Copper Thin Films for Surface Enhanced Raman Scattering Based Molecular Sensors
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 表面增強拉曼石墨銀金屬粒子
外文關鍵詞: SERS, graphite, silver, nano-particles, graphene, R6G, adenine.
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯為單原子層的石墨,是一種二維結構的材料,擁有優異的載子遷移率和場效特性等,其中石墨烯為穩定碳材料具備生物相容性,因此也在生物醫學檢測方面成為熱門的研究。
    其中石墨烯用於表面增強拉曼散射(Surface Enhanced Raman Scattering, SERS)技術被快速發展,因此本文提出石墨複合銀金屬電漿子結構於銅模UNCD基板製作術,以熱化學氣相沉積法在鍍銅膜的UNCD基板上成長石墨結構,隨後以銀反應液進行無極電鍍,由於自由能差異會在沒有石墨的間隙內沉積銀金屬花瓣奈米顆粒,並成功量測到戴不同電性的兩種分子,分別是腺嘌呤和羅明丹,在雷射光激發下顆粒間電場相互耦合並增強物理機制,而石墨烯可以藉由螢光淬滅與ππ*吸引待測分子提供增強化學機制,兩機制互輔互成為此基板高表現建立基礎。

    Graphene is a monoatomic layer of graphite. It is a two-dimension structural material with excellent carrier mobilities and field effect characteristics. Graphene is also a biocompatible carbon material for biomedical measurement and research.
    Among applications of carbon materials to surface enhanced Raman scattering (SERS), graphene assisted SERS has been rapidly developed. Therefore, graphene-silver plasmonic coupling structure is proposed using copper film on UNCD substrates with graphene deposition by thermal chemical vapor deposition.

    摘要 I Abstract II 致謝 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1前言 1 1.2 碳的同素異形體 2 1.2.1鑽石 2 1.2.2石墨 3 1.2.3石墨烯 4 1.2.4奈米碳管 4 1.2.5富勒烯 5 1.3研究動機 6 第二章 文獻回顧 7 2.1石墨烯製備方法 7 2.1.1 機械式剝離法(Mechanical exfoliation) 7 2.1.2氧化還原法(Oxidation and Reduction) 8 2.1.3化學氣相沉積法(Chemical vapor deposition, CVD) 9 2.2石墨烯轉移方法 12 2.2.1 PDMS 轉移方式 12 2.2.2 PMMA轉移方式 14 2.2.3 roll-to-roll 轉移方式 15 2.2.4 H2氣泡轉移方式 17 2.3 直接製備石墨烯於所目標基板上(transfer-free graphene) 18 2.4石墨析相關檢測方式判定工具 20 2.3.1光學顯微鏡(Optical microscope, OM) 20 2.3.2原子力學顯微鏡(Atomic force microscope, AFM) 21 2.3.3掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 22 2.3.4穿隧式電子顯微鏡(Transmission electron microscopy, TEM) 23 2.3.5電性相關檢測 24 2.3.6拉曼光譜檢測 24 2.4拉曼光譜分析應用於石墨烯檢測 34 2.5表面增強拉曼散射相關理論 36 2.5.1電磁場物理機制 36 2.5.2化學機制 38 2.6近期應用於表面增強拉曼散射基板技術 41 第三章 實驗儀器與介紹 53 3.1實驗製程設備 53 3.1.2化學反應槽設置 59 3.2分析與量測儀器 59 3.2.2掃描式電子顯微鏡(Scanning electron microscopy) 60 3.2.3拉曼光譜儀(Raman spectroscopy) 62 第四章 實驗結果與討論 63 4.1石墨烯成長條件 63 4.1.1石墨烯成長於銅箔上 63 4.1.2非晶碳膜石墨成長於SiO2目標基板上 65 4.2石墨烯與非晶碳複合銀奈米花瓣金屬粒子結構於表面增強拉曼散射基板制備 71 4.2.2退火後於UNCD銅膜基板成長碳膜並成長銀奈米花瓣金屬粒子 74 4.3石墨烯與非晶碳複合銀奈米花瓣金屬粒子結構於表面增強拉曼散射UNCD基板之分析量測 76 4.3.1石墨非晶碳複合電漿子結構分析 76 4.2.2石墨非晶碳複合電漿子SERS之量測分析 80 第五章 結論 82 第六章 未來展望 83 第七章 參考文獻 84

    [1] H. W. Kroto., et al., C60: Buckminsterfullerene. Nature volume 318, pages 162–163 (14 November 1985)
    [2] Sumio Iijima., et al., Helical microtubules of graphitic carbon. Nature volume 354, pages 56–58 (07 November 1991
    [3] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669
    [4] 朱宏伟., et al., 石墨烯:单原子层二维碳晶体——2010年诺贝尔物理学奖简介. Cinese Journal of Nature, 2010, 32(6): p. 326~331
    [5] Katsnelson, Mikhail I. "Graphene: carbon in two dimensions." Materials today10.1 (2007): 20-27
    [6] Seol, J.H., et al., Two-dimensional phonon transport in supported graphene. Science, 2010. 328(5975): p. 213-216.
    [7] Lee, Changgu, et al. "Measurement of the elastic properties and intrinsic strength of monolayer graphene." science 321.5887 (2008): 385-388.
    [8] Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
    [9] Iyechika, Y., Application of graphene to high-speed transistors: expectations and challenges. Sci. Technol. Trends, 2010. 37: p. 76-92.
    [10] Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol, 2008. 3(9): p. 538-42.
    [11] Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
    [12] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. Large- area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314, 2009.
    [13] Obraztsov, A. N., et al. "Chemical vapor deposition of thin graphite films of nanometer thickness." Carbon 45.10 (2007): 2017-2021.
    [14] Su, C. Y., Lu, A. Y., Wu, C. Y., Li, Y. T., Liu, K. K., Zhang, W., ... & Li, L. J. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano letters, 11(9), 3612-3616, 2011.
    [15] Li, X., Cai, W., Jung, I. H., An, J. H., Yang, D., Velamakanni, A., ... & Ruoff, R.S. Synthesis, characterization, and properties of large-area graphene films. ECS Transactions, 19(5), 41-52, 2009.
    [16] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... & Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 9(12), 4359-4363, 2009.
    [17] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J. Roll-to- roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574-578, 2010.
    [18] de la Rosa, C. J. L., Sun, J., Lindvall, N., Cole, M. T., Nam, Y., Löffler, M., ... & Yurgens, A. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters, 102(2), 022101, 2013.
    [19] Ling, Xi, and Jin Zhang. "First‐Layer Effect in Graphene‐Enhanced Raman Scattering."Small 6.18 (2010): 2020-2025.
    [20] Li, Xuesong, et al. "Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper." Journal of the American Chemical Society 133.9 (2011): 2816-2819.
    [21] Zhang, Zhiyong, et al. "Direct extraction of carrier mobility in graphene ield-effect transistor using current-voltage and capacitance-voltage easurements." Applied Physics Letters 101.21 (2012): 213103.
    [22] Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov,S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. Acs Nano, 5(7), 6069-6076, 2011.
    [23] Zhu, H., et al., One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor. Carbon, 2016. 100: p. 201-207.
    [24] Luo, B., et al., Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater, 2014. 26(20): p. 3218-24.
    [25] Chiang, C.W., et al., Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Appl Mater Interfaces, 2016. 8(1): p. 466-71.
    [26] Maultzsch, J., et al., Phonon dispersion in graphite. Physical review letters, 2004. 92(7): p. 075501.
    [27] Dresselhaus, M., A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010. 1(1): p. 89-108.
    [28] Ferraro, J.R., Introductory raman spectroscopy. 2003: Academic press.
    [29] Colthup, N., Introduction to infrared and Raman spectroscopy. 2012: Elsevier.
    [30] Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. 2007: Thomson Brooks/Cole
    [31] T. Deschaines et al Thermo Fisher Scientific, Madison, WI, USA
    [32] Kittel, C., Introduction to solid state physics. 2005: Wiley
    [33] https://depts.washington.edu/ntuf/facility/.../NTUF-Raman-Tutorial.pdf
    [34] Malard, L. M., et al. "Raman spectroscopy in graphene." Physics Reports473.5 (2009): 51-87.
    [35] Malard, L., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5): p. 51-87.
    [36] http://www2.ess.nthu.edu.tw/news/images/pic/2007.10.24.pdf
    [37] Xie, L., et al., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J Am Chem Soc, 2009. 131(29): p. 9890-1.
    [38] Liu, C.-Y., et al., Plasmonic coupling of silver nanoparticles covered by hydrogenterminated graphene for surface-enhanced Raman spectroscopy. Optics express, 2011. 19(18): p. 17092-17098.
    [39] He, X. N., Gao, Y., Mahjouri-Samani, M., Black, P. N., Allen, J., Mitchell, ., ... & Lu, Y. F. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 23(20), 205702, 2012.
    [40] Xu, W., et al., Surface enhanced Raman spectroscopy on a flat graphene surface. Proc Natl Acad Sci U S A, 2012. 109(24): p. 9281-6.
    [41] He, S., Liu, K. K., Su, S., Yan, J., Mao, X., Wang, D., ... & Fan, C. Graphene- based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Analytical chemistry, 84(10), 4622- 4627, 2012
    [42] Matz, D.L., et al., Signature Vibrational Bands for Defects in CVD Single-Layer Graphene by Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett, 2015. 6(6): p. 964-9.
    [43] Yoon, J.-C., et al., A case study: effect of defects in CVD-grown graphene on graphene enhanced Raman spectroscopy. RSC Adv., 2015. 5(77): p. 62772-62777.
    [44] Zhao, Y., et al., Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids. Chem Commun (Camb), 2015. 51(5): p. 866-9.
    [45] Guo, J., et al., Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system 105 for homogeneous, long-term stable and sensitive SERS activity. Applied Surface Science, 2017. 396: p. 1130-1137.
    [46] Li, Z., et al., High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si. Sci Rep, 2016. 6: p. 38539.
    [47] Zhao, Y., et al., Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Nanoscale, 2017. 9(3): p. 1087-1096.
    [48] Jaroslav V. Burda., et al., Ab Initio Study of the Interaction of Guanine and Adenine with Various Mono- and Bivalent Metal Cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). J. Phys. Chem. 1996, 100, 7250-7255
    [49] Scott G. Harroun., et al., The Controversial Orientation of Adenine on Gold and Silver. ChemPhysChem 2018, 19, 1003 – 1015
    [50] Kan Zhang., et al., Interaction of Rhodamine 6G molecules with graphene: a combined computational experimental study. Phys. Chem. Chem. Phys., 2016, 18, 28418--28427

    無法下載圖示 校內:2023-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE