簡易檢索 / 詳目顯示

研究生: 林幸緯
Lin, Xing-Wei
論文名稱: 基於模型融合之線性馬達精密運動控制
Model-Fusion-Based Precision Motion Control of Linear Motors
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 線性馬達模型融合精密運動控制
外文關鍵詞: Linear motor, model fusion, precision motion control
相關次數: 點閱:112下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提供一套基於模型融合的線性馬達精密運動控制。藉由論文中的實驗觀察發現,線性馬達在小範圍時的運動情形與在大範圍時有所不同,其主要的差別是源至於線性馬達在不同運動範圍下產生不同的摩擦力。因此,在本論文中選用了兩種摩擦力模型。首先,以黏滯摩擦力來描述線性馬達在動摩擦區的摩擦力現象;接著,以非線性彈簧與阻尼器模擬線性馬達在靜摩擦區的摩擦力現象。藉由不同的實驗可以得出線性馬達在不同摩擦力下的摩擦力參數,並且藉由這些參數建立動摩擦區模型與靜摩擦區模型。最後根據上述兩摩擦力模型設計對應之前饋與反饋控制器,並以干擾估測器提高系統的強健性。實驗結果顯示,依線性馬達運動時所屬之區域(動摩擦區域與靜摩擦區域)切換對應的控制器可提高其追蹤性能,同時定位精度可達到感測器之解析度。

    This thesis provides a model-fusion-based method for precision motion control of linear motors.With experimental investigation,it can be found that a linear motor exhibits different motion behaviors in different regions because it encounters different friction forces in these regions. Therefore, two friction models are utilized in this research to depict friction forces in different regions. First, in the kinetic friction region, the friction force is simulated with a nonlinear spring and a damper. Once all parameters in these two friction models are derived by experiment and system identification, corresponding feedforward and feedback controllers can be designed. Besides, a disturbance observer is integrated to enhance the system robustness. Experimental results show that, tracking performance is improved by switching the corresponding controller alternately according to where the linear motor is (i.e., the static friction region or kinetic friction region).Moreover, the positioning accuracy can achieve the sensor resolution.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 符號表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第二章問題分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 摩擦力的現象. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 靜摩擦區動態實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 靜摩擦區靜態實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 動摩擦區動態實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.4 靜摩擦區潛變(Creeping)實驗. . . . . . . . . . . . . . . . . . . . . 16 2.2 摩擦力模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 靜摩擦力模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 動摩擦力模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 摩擦力模型參數估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 非線性彈簧參數估測. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 阻尼參數估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第三章電路設計及軟體實現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 控制與訊號處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 弦波切分(Sin/D Converter)單元. . . . . . . . . . . . . . . . . . . 28 3.2.2 正交解碼單元. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.3 運動控制卡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 執行機構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 驅動與動力源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 硬體極限. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 第四章控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1 動摩擦區控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 干擾估測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.2 微分估測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.3 PI控制器Gcv設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.4 PID控制器Gcp n1設計. . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.5 前饋控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.6 狀態估測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 靜摩擦區控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.1 PID控制器Gcp n2之穩定性分析. . . . . . . . . . . . . . . . . . . . 61 4.2.2 前饋控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 第五章實驗與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1 斜坡訊號之定位與追蹤. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.1 Gcv與Gcp n1控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.2 Gcv與Gcp n1控制器+DOB . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.3 Gcv與Gcp n1控制器+DOB+FF1 . . . . . . . . . . . . . . . . . . . . 73 5.1.4 不同摩擦力模型之切換控制. . . . . . . . . . . . . . . . . . . . . . 74 5.1.5 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 第六章結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2 展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 附錄A 誤差方程式之拉氏轉換. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 附錄B 以積分法求得Lypunov函數. . . . . . . . . . . . . . . . . . . . . . . . . . 94

    [1] I.F. Chiu. The study on command and friction disturbance feed forward control for machine tools. page 93, 2001.
    [2] K. Ogata. Modern Control Engineering. Prentice-Hall,ING, 1990.
    [3] J. F. Eastham. Novel synchronous machines. linear and disc. IEE Proceedings B: Electric Power Applications, 137(1):49–58, 1990.
    [4] I. Boldea and S. A. Nasar. Linear electric actuators and generators. IEEE International Electric Machines and Drives Conference Record, IEMDC, pages MA11.1–1.5. IEEE, 1997.
    [5] B. Yao and L. Xu. Adaptive robust motion control of linear motors for precision manufacturing. Mechatronics, 12(4):595–616, 2002.
    [6] G. W. McLean. Review of recent progress in linear motors. IEE Proceedings B: Electric Power Applications, 135(6):380–416, 1988.
    [7] C. C. D. Wit, H. Olsson, K. J. Astrom, and P. Lischinsky. A new model for control of systems with friction. Automatic Control, IEEE Transactions on, 40(3):419–425, 1995.
    [8] W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park. Measurement of multidegree-of-freedom error motions of a precision linear air-bearing stage. Precision Engineering, 30(1):96–103, 2006.
    [9] M. Slocum, A.and Basaran, R. Cortesi, and A. J. Hart. Linear motion carriage with aerostatic bearings preloaded by inclined iron core linear electric motor. Precision Engineering, 27(4):382–394, 2003.
    [10] H. Olsson, K. J. Astrom, C. C. D. Wit, M. Gafvert, and P. Lischinsky. Friction models and friction compensation. European Journal of Control, 4(3):176–195, 1998.
    [11] B. Armstrong-Helouvry, P. Dupont, and C. C. D. Wit. Survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica,
    30(7):1083–1138, 1994.
    [12] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo. An integrated friction model structure with improved presliding behavior for accurate friction compensation. Automatic Control, IEEE Transactions on, 45(4):675–686, 2000.
    [13] R. S. H. Richardson and H. Nolle. Surface friction under time-dependent loads. Wear, 37(1):87–101, 1976.
    [14] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo. An integrated friction model structure with improved presliding behavior for accurate friction compensation. Automatic Control, IEEE Transactions on, 45(4):675–686, 2000.
    [15] C. Hsieh and Y. C. Pan. Dynamic behavior and modelling of the pre-sliding static friction. Wear, 242(1-2):1–17, 2000.
    [16] J. Faiz and H. Jafari. Accurate modeling of single-sided linear induction motor considers end effect and equivalent thickness. In 2000 International Magnetics
    Conference (INTERMAG 2000), April 9, 2000 - April 12, 2000, volume 36 of IEEE Transactions on Magnetics, pages 3785–3790. Institute of Electrical and Electronics Engineers Inc.
    [17] E. Favre, L. Cardoletti, and M. Jufer. Permanent-magnet synchronous motors: a comprehensive approach to cogging torque suppression. Industry Applications,
    IEEE Transactions on, 29(6):1141–1149, 1993.
    [18] Z. Q. Zhu, Z. P. Xia, D. Howe, and P. H. Mellor. Reduction of cogging force in slotless linear permanent magnet motors. Electric Power Applications, IEE Proceedings
    -, 144(4):277–282, 1997.
    [19] Ohnishi. ¡a new servo motor in mechatronics.pdf¿. Transactions of the Japanese Society of Electrical Engineering, vol 107-D (1987):pp. 83–86, 1987.
    [20] T. Umeno and Y. Hori. Robust speed control of dc servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on Industrial Electronics,
    38(5):363–368, 1991.
    [21] H. S. Lee and M. Tomizuka. Robust motion controller design for high-accuracy positioning systems. IEEE Transactions on Industrial Electronics, 43(1):48–55,
    1996.
    [22] C.L. Lin, H.Y. Jan, and N.C. Shieh. Ga-based multiobjective pid control for a linear brushless dc motor. IEEE/ASME Transactions on Mechatronics, 8(1):56–65, 2003.
    [23] R Ma, H Zhou, P Sun, and S Hou. dspace-based pid controller for a linear motor driven inverted pendulum. In 14th International Conference on Mechatronics and Machine Vision in Practice, M2VIP 2007, December 3, 2007 - December 5, 2007, Proceedings 14th International Conference on Mechatronics and Machine Vision in Practice, M2VIP2007, pages 68–72. Inst. of Elec. and Elec. Eng. Computer Society.
    [24] G. M. Clayton, S.C. Tien, K. K. Leang, Q. Zou, and S. Devasia. A review of feedforward control approaches in nanopositioning for high-speed spm. Journal of Dynamic Systems, Measurement, and Control, 131(6):061101–061101, 2009. 10.1115/1.4000158.
    [25] Leonard M. Silverman. Inversion of multivariable linear systems. Automatic Control, IEEE Transactions on, 14(3):270–276, 1969.
    [26] C. Hsieh and Y. C. Pan. Dynamic behavior and modelling of the pre-sliding static friction. Wear, 242(1-2):1–17, 2000.
    [27] S.S. Rao. Mechanical Vibrations, 4/E. Pearson Education, 2003.
    [28] O. Reynolds. On the theory of lubrication and its application to mr. beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. In Fluid Film Lubrication: A Century of Progress. Presented at Joint Lubrication Conference., pages 135–217. ASME.
    [29] A. Furutani S. Futami and S. Yoshida. Nanometer positioning and its microdynamics. Nanotechnology, 1, 1990.
    [30] Muirhead V. C. Ltd. David A.G. Interpolation method and shaft angle encoder. (US 5041829), 08 1991.
    [31] H. S. Lee and M. Tomizuka. Robust motion controller design for high-accuracy positioning systems. IEEE Transactions on Industrial Electronics, 43(1):48–55, 1996.
    [32] C. J. Kempf and S. Kobayashi. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems
    Technology, 7(5):513–526, 1999.
    [33] T. Umeno and Y. Hori. Robust speed control of dc servomotors using modern two degrees-of-freedom controller design. IEEE Transactions on Industrial Electronics,
    38(5):363–368, 1991.
    [34] R. H. Brown, S. C. Schneider, and M. G. Mulligan. Analysis of algorithms for velocity estimation from discrete position versus time data. IEEE Transactions on
    Industrial Electronics, 39(1):11–19, 1992.
    [35] U.A. Bakshi and V. Bakshi. Modern Control Theory. Technical Publications, 2009.
    [36] Y.J. Li. Precision Motion Control of Linear Motor with Nonlinear Friction Phenomena Compensation. PhD thesis, 2010.
    [37] K. Astrom and T. Hagglund. Pid controller: Theory, design and tuning 2nd ed. Library of Congress Cataloging-in-Publication Data, pages 120–134, 1994.
    [38] M. Green and D.J.N. Limebeer. Linear Robust Control. Dover Publications, Incorporated, 2012.
    [39] K. K. Leang, Zou Qingze, and S. Devasia. Feedforward control of piezoactuators in atomic force microscope systems. Control Systems, IEEE, 29(1):70–82, 2009.
    [40] S. Sujitjorn and W. Wiboonjaroen. State-pid feedback for pole placement of LTI systems. Mathematical Problems in Engineering, 2011:1–20, 2011.
    [41] W.E. Milne. Numerical Solution of Differential Equations. John Wiley and Sons, 1953.
    [42] S. N. Huang, K. K. Tan, and T. H. Lee. Adaptive precision control of permanent magnet linear motors. Asian Journal of Control, 4(2):193–198, 2002.

    下載圖示 校內:2015-07-19公開
    校外:2015-07-19公開
    QR CODE