| 研究生: |
毛凱駿 MAO, KAI-CHUN |
|---|---|
| 論文名稱: |
利用擴散接合Nd:YVO4/Nd:GdVO4晶體產生主動式Q開關雙波長圓柱向量光束 Active Q-switched and dual-wavelength cylindrical vector beam in a diffusion-bonded Nd:YVO4/Nd:GdVO4 laser |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 圓柱向量光束 、雙波長雷射 、光學渦流 、擴散接合晶體 、光束品質因子 、聲光調製器 、Q開關脈衝 |
| 外文關鍵詞: | cylindrical vector beam, dual-wavelength, diffusion-bonded crystal, optical vortex, beam quality factor M2, Acousto-Optic Modulator, Q-switch |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此實驗利用雙折射擴散接合晶體Nd:YVO4/ Nd:GdVO4和聲光調製器,並使用ABCD law計算穩定區範圍,設計四面鏡共振腔產生雙波長特性的圓柱向量光。藉著改變穩定區位置,產生圓柱向量光,並且可藉由改變穩定區位置得到雙波長方位角偏振光或雙波長徑向偏振光,另外加入聲光調製器,輸入32kHz的方波產生Q開關脈衝雷射,量測偏振度D.O.P確保產生的圓柱向量光都有良好的偏振特性,再經由CCD量測光束品質因子M-squared。最後運用馬赫-曾德爾干涉儀測量雙波長圓柱向量光的干涉特性和它的分解模態HG01與HG10都擁有一股渦流之光學特性。
In this thesis, we mainly use a birefringent diffusion-bonded crystal Nd:YVO4/ Nd:GdVO4 and an Acousto-Optic Modulator(AOM) along with a four-element cavity to generation dual-wavelength cylindrical vector beams. Changing the position of the stable region can generate cylindrical vector beams, and can obtain dual wavelength azimuthally polarized beams or dual-wavelength radially polarized beams. In addition, an Acousto-Optic Modulator is added, a 32kHz square wave signal is input to AOM to generate a Q-switched pulsed laser, the degree of polarization D.O.P is measured to ensure the generated cylindrical vector beams has good polarization characteristics, and the beam quality factor M2 is measured by CCD. Finally, the Mach-Zehnder interferometer is used to measure the interference properties of the double-wavelength cylindrical vector beams and its decomposition modes HG01 and HG10 have the optical properties of a vortex, the topological charges l were 1.
[1] M. C. Zhong, L. Gong, D. Li, J. H. Zhou, Z. Q. Wang, and Y. M. Li, "Optical trapping of core-shell magnetic microparticles by cylindrical vector beams," Applied Physics Letters, vol. 105, no. 18, Art no. 181112, Nov 2014.
[2] G. Bautista et al., "Nonlinear microscopy using cylindrical vector beams: applications to three-dimensional imaging of nanostructures," Optics Express, vol. 25, no. 11, pp. 12463-12468, May 2017.
[3] Z. H. Rong, C. F. Kuang, Y. Fang, G. Y. Zhao, Y. K. Xu, and X. Liu, "Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams," Opt. Commun., vol. 354, pp. 71-78, Nov 2015.
[4] R. Drevinskas et al., "Laser material processing with tightly focused cylindrical vector beams," Applied Physics Letters, vol. 108, no. 22, Art no. 221107, May 2016.
[5] M. Bashkansky, D. Park, and F. K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Optics Express, vol. 18, no. 1, pp. 212-217, Jan 2010.
[6] S. C. Tidwell, D. H. Ford, and W. D. Kimura, "GENERATING RADIALLY POLARIZED BEAMS INTERFEROMETRICALLY," Appl. Opt., vol. 29, no. 15, pp. 2234-2239, May 1990.
[7] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, "Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes," Appl. Opt., vol. 46, no. 16, pp. 3304-3310, Jun 2007.
[8] M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, "Multilayer polarizing grating mirror used for the generation of radial polarization in Yb : YAG thin-disk lasers," Opt. Lett., vol. 32, no. 22, pp. 3272-3274, Nov 2007.
[9] J. F. Bisson, J. Li, K. Ueda, and Y. Senatsky, "Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon," Optics Express, vol. 14, no. 8, pp. 3304-3311, Apr 2006.
[10] K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd : YVO4 crystal," Opt. Lett., vol. 31, no. 14, pp. 2151-2153, Jul 2006.
[11] K. C. Chang, T. Lin, and M. D. Wei, "Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon," Optics Express, vol. 21, no. 13, pp. 16035-16042, Jul 2013.
[12] B. Huang et al., "Dual-Wavelength Nanosecond Nd:YVO4 Laser With Switchable Inhomogeneous Polarization Output," IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 5, Art no. 1601305, Sep-Oct 2018.
[13] Z. X. Zhang, Y. Cai, J. Wang, H. D. Wan, and L. Zhang, "Switchable Dual-Wavelength Cylindrical Vector Beam Generation From a Passively Mode-Locked Fiber Laser Based on Carbon Nanotubes," IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, Art no. 1100906, May-Jun 2018.
[14] P. X. Li, D. H. Li, C. Y. Li, and Z. G. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 mu m and 946 nm in Nd : YAG and their frequency doubling," (in English), Opt. Commun., Article vol. 235, no. 1-3, pp. 169-174, May 2004.
[15] X. W. Fan, J. L. He, H. T. Huang, and L. Xue, "An intermittent oscillation dual-wavelength diode-pumped Nd : YAG laser," Ieee Journal of Quantum Electronics, vol. 43, no. 9-10, pp. 884-888, Sep-Oct 2007.
[16] Z. P. Wang et al., "Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser," Optics Express, vol. 17, no. 14, pp. 12076-12081, Jul 2009.
[17] B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, "Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065
[18] M. Mohamed, B. Zhang, Q. L. Ma, J. Kneller, and C. Q. Xu, "Efficient Dual-Wavelengths Continuous Mode Lasers by End-Pumping of Series Nd:YVO4 and Nd:GdVO4 Crystals and Speckle Reduction Study," Photonics, vol. 6, no. 2, Art no. 53, Jun 2019.
[19] F. L. Chang et al., "Dual-central-wavelength passively mode-locked diffusion-bonded Nd:YVO4/Nd:GdVO4 laser with a semiconductor saturable absorber mirror," Laser Physics Letters, vol. 14, no.8 , Art no. 085803, Aug 2017.
[20] Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, "Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal," Optical Materials Express, vol. 5, no. 10, pp. 2136-2141, Oct 2015.
[21] P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, "Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser," Opt. Lett., vol. 35, no. 23, pp. 3979-3981, Dec 2010.
[22] J. F. Federici et al., "THz imaging and sensing for security applications - explosives, weapons and drugs," Semiconductor Science and Technology, vol. 20, no. 7, pp. S266-S280, Jul 2005.
[23] K. T. Gahagan and G. A. Swartzlander, "Optical vortex trapping of particles," Opt. Lett., vol. 21, no. 11, pp. 827-829, Jun 1996.
[24] J. Wang, "Advances in communications using optical vortices," Photonics Research, vol. 4, no. 5, pp. B14-B28, Oct 2016.
[25] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, "Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures," Nano Letters, vol. 12, no. 7, pp. 3645-3649, Jul 2012.
[26] Y. J. Han and G. H. Zhao, "Measuring the topological charge of optical vortices with an axicon," Opt. Lett., vol. 36, no. 11, pp. 2017-2019, Jun 2011.
[27] M. W. Beijersbergen, L. Allen, H. Vanderveen, and J. P. Woerdman, "ASTIGMATIC LASER MODE CONVERTERS AND TRANSFER OF ORBITAL ANGULAR-MOMENTUM," Opt. Commun., vol. 96, no. 1-3, pp. 123-132, Feb 1993.
[28] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "HELICAL-WAVE-FRONT LASER-BEAMS PRODUCED WITH A SPIRAL PHASEPLATE," Opt. Commun., vol. 112, no. 5-6, pp. 321-327, Dec 1994.
[29] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES," Physical Review A, vol. 45, no. 11, pp. 8185-8189, Jun 1992.
[30] Y. Y. Lin, C. C. Yeh, H. C. Lee, S. L. Yang, J. H. Tu, and C. P. Tang, "Optical vortex lasers by the coherent superposition of off-axis multiple-pass transverse modes in an azimuthal symmetry breaking laser resonator," Journal of Optics, vol. 20, no. 7, Art no. 075203, Jul 2018.
[31] D. M. Chen, Y. J. Miao, H. Fu, H. S. He, J. Tong, and J. Dong, "High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency," Apl Photonics, vol. 4, no. 10, Art no. 106106, Oct 2019.
[32] O.E. Nanii, A.I. Odintsov, A.I. Panakov, A.P. Smirnov and A.I. Fedoseev, "Simultaneous mode locking and Q-switching in a solid-state laser with a travelling-wave acousto-optic modulator and retroreflector, "Quantum Electron. 49, 119, 2019
,
[33] Y.-J. Yu, X.-Y. Chen, C. Wang, C.-T. Wu, M. Yu, and G.-Y.Jin, "High repetition rate 808nm diode-directly-pumped electro-optic Q-switched NdGdVO4 laser with adouble-crystal RTP electro-optic modulator, "Opt. Commum. 304,39-42,2013
[34] U. Keller et al., " Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,"IEEE J. Sel.Top. Quantum Electron. 2, 435-453,1996
[35] 王修含"脈衝雷射(pulsed laser)的分類"
[36] Q. W. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1-57, Jan 2009.
[37] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, 2019.
[38] M. Tsunekane, N. Taguchi, and H. Inaba, "High power operation of diode-end pumped Nd:YVO4 laser using composite rod with undoped end," Electronics Letters, vol. 32, no. 1, pp. 40-42, Jan 1996.
[39] R. Feldman, Y. Shimony, and Z. Burshtein, "Passive Q-switching in Nd : YAG/Cr4+: YAG monolithic microchip laser," Optical Materials, vol. 24, no. 1-2, pp. 393-399, Oct-Nov 2003.
[40] H. C. Liang, T. L. Huang, F. L. Chang, C. L. Sung, and Y. F. Chen, "Flexibly Controlling the Power Ratio of Dual-Wavelength SESAM-Based Mode-Locked Lasers With Wedged-Bonded Nd: YVO4/Nd: GdVO4 Crystals," (in English), IEEE J. Sel. Top. Quantum Electron., Article vol. 24, no. 5, p. 5, Art no. 1600605, Sep-Oct 2018.
[41] Y. J. Huang, H. H. Cho, K. W. Su, and Y. F. Chen, "Dual-Wavelength Intracavity OPO With a Diffusion-Bonded Nd: YVO4/Nd:GdVO4 Crystal," (in English), Ieee Photonics Technology Letters, Article vol. 28, no. 10, pp. 1123-1126, May 2016.
[42] M. Padgett, J. Courtial, and L. Allen, "Light's orbital angular momentum," Physics Today, vol. 57, no. 5, pp. 35-40, May 2004.
[43] M. J. Padgett, F. M. Miatto, M. P. J. Lavery, A. Zeilinger, and R. W. Boyd, "Divergence of an orbital-angular-momentum-carrying beam upon propagation," New Journal of Physics, vol. 17, Art no. 023011, Feb 2015.
[44] S. Qiu et al., "Influence of lateral misalignment on the optical rotational Doppler effect," Appl. Opt., vol. 58, no. 10, pp. 2650-2655, 2019/04/01 2019.
[45] G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning. CRC Press, 2004.
[46] H. Yu, Y. Liu, A. Braglia, G. Rossi, and G. Perrone, "Investigation of collimating and focusing lenses' impact on laser diode stack beam parameter product," Appl. Opt., vol. 54, no. 34, pp. 10240-10248, Dec 2015.
[47] E. S. Anthony, "New developments in laser resonators," in Proc.SPIE, vol. 1224, 1990.
[48] T. Verdeyen, "Laser electronics,"lael,1989
[49] S.O.Kasap, Optoelectronics andphotonics, Prentice Hall,2001.