簡易檢索 / 詳目顯示

研究生: 黃卉宇
Huang, Hui-Yu
論文名稱: 不同溫度及壓力的超臨界二氧化碳環境下含碳化矽及二氧化矽之套管水泥性質研究
A study of the properties of casing cement containing silicon carbide and silicon dioxide in supercritical carbon dioxide at different temperatures and pressures
指導教授: 王建力
WANG, CHIEN-LI
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: API-G水泥超臨界二氧化碳環境碳化矽二氧化矽鈣矽比
外文關鍵詞: API-G cement, Supercritical CO2 environment, silicon carbide, silicon dioxide, Ca/Si ratio
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自工業革命以來,大氣中二氧化碳濃度不斷增加,對生態環境及全球氣候造成影響。碳捕獲與封存為其中一個有效減緩溫室效應的方法,藉由源頭捕捉二氧化碳,再運輸至適合的地點儲存以降低大氣中的濃度,其中地層封存是將二氧化碳儲存在地下枯竭油氣層、深層鹽水層中,因特定溫度及壓力環境,使二氧化碳形成超臨界態(Supercritical CO2),因同時具液態之高密度及氣態的高流動性,而適合長時間儲存在岩石圈之密閉空間及孔隙內,但在儲存及運輸過程中二氧化碳接觸套管水泥後易使之碳化(Carbonation)。
    經由前人研究發現,油井水泥中添加適當比例之碳化矽及二氧化矽均能有效維持試體性質、減緩碳化造成的影響,因此本實驗將油井水泥加入3wt.%碳化矽及5wt.%二氧化矽,置於三種溫度及壓力(45°C、13.2MPa; 52°C、16.2MPa; 60°C、18.8MPa)之超臨界二氧化碳環境中反應28天。結果顯示,添加二氧化矽之水泥更能填補孔隙,形成緻密之試體抵抗碳酸侵蝕,其滲透係數、超聲波試驗及楊氏模數皆較添加碳化矽試體佳,另發現試體過渡區中鈣矽比較低之試體因能形成細小矽晶體填補孔隙、支撐試體受壓,有較佳之單軸壓縮強度。

    Geological storage is the method to store carbon dioxide underground in places like depleted gas reservoirs and deep saline aquifers. Under the specific temperature and pressure environment, the carbon dioxide is formed into a supercritical state (Supercritical CO2, sCO2). sCO2 has the characteristics of high density in the liquid state and high fluidity in the gaseous state, it is suitable for long-term storage in the confined space and pores of the lithosphere. However, carbon dioxide may easily carbonize the casing cement after they contact during storage and transportation.
    Through previous separate studies, it was found that adding 3wt.% silicon carbide(SiC) and 5wt.% silicon dioxide(SiO2) to oil well cement can maintain the best properties and most effectively slow down the impact of carbonization. Therefore, 3wt.% SiC and 5wt.% SiO2 was proposed in this study as an additive to oil well cement. Three sCO2 environments were selected, their temperature and pressure are 45°C, 13.2MPa; 52°C, 16.2MPa; 60°C, 18.8MPa. These proposed specimens were exposed in these sCO2 environments for 28 days. The viscosity and specific gravity of the slurry samples were measured. The permeability, ultrasonic velocities, uniaxial strength, the depth of carbonation of these specimens were measured at 0, 7, 14, 28 days of exposure. After 28 days, SEM and EDS were performed for each specimen. The results show that the cement with 5wt.% SiO2 can fill more pores and form a denser specimen to resist carbonic acid corrosion than the one with 3wt.% SiC. Furthermore, this study finds that the specimens with a lower Ca/Si ratio in the transition zone has a higher value in uniaxial compressive strength.

    摘要 I 目錄 XIII 圖目錄 XV 表目錄 XX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究內容與流程 4 第二章 文獻回顧 6 2-1 二氧化碳捕捉與封存 6 2-1-1 二氧化封存方式 6 2-1-2 二氧化碳洩漏之研究 8 2-2 水泥碳化研究 13 2-2-1 水泥碳化機制 13 2-2-2 水泥碳化對性質的影響 16 2-2-3 二氧化碳對添加材料之水泥的性質影響 24 2-3 添加二氧化矽的水泥試體性質研究 28 2-4 添加碳化矽的水泥試體性質研究 34 2-5 本實驗室歷屆模擬二氧化碳環境之相關研究 40 第三章 實驗材料與設備 48 3-1 試驗材料與製備 48 3-1-1 試驗材料及配比 48 3-1-2 試體製備 51 3-2 各項試驗設備與方法 55 3-2-1 超臨界二氧化碳養治設備 55 3-2-2 比重試驗 58 3-2-3 黏度試驗 58 3-2-4 滲透係數試驗 60 3-2-5 超聲波試驗 61 3-2-6 單軸抗壓試驗 63 3-2-7 碳化深度量測 65 3-2-8 微觀結構及成分組成分析(SEM及EDS) 66 第四章 實驗結果與討論 68 4-1 黏度與比重 69 4-2 滲透係數 70 4-3 超聲波試驗 71 4-4 單軸抗壓強度試驗 77 4-5 碳化深度量測試驗 79 4-6 化學分析(SEM與EDS) 81 4-6-1 SEM分析 82 4-6-2 EDS分析 90 第五章 結論與建議 93 5-1 結論 93 5-2建議 95 參考文獻 96

    [1] (API), A. P. I., Specification for Cement and Materials for Well Cementing, 23 ed. Washington: API, 2005.
    [2] (IPCC), I. P. o. C. C., IPCC Special Report on Carbon Dioxide Capture and Storage. 2005.
    [3] Aiex, C., Campos, G., Deshpande, A., Chiney, A., Patil, S., and Ravi, K., "An Experimental Study on Effects of Static CO 2 on Cement under High-Pressure/High-Temperature Conditions," in Offshore Technology Conference, 2015: Offshore Technology Conference.
    [4] Aydin, A., "Upgraded ISRM suggested method for determining sound velocity by ultrasonic pulse transmission technique," in The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014: Springer, 2013, pp. 95-99.
    [5] Bachu, S. and Celia, M. A., "Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites," Washington DC American Geophysical Union Geophysical Monograph Series, vol. 183, pp. 203-216, 2009.
    [6] Bagheri, M., Shariatipour, S. M., and Ganjian, E., "A review of oil well cement alteration in CO2-rich environments," Construction and Building Materials, vol. 186, pp. 946-968, 2018.
    [7] Bahari, A., Berenjian, J., and Sadeghi-Nik, A., "Modification of Portland cement with nano SiC," Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, vol. 86, no. 3, pp. 323-331, 2016.
    [8] Barlet-Gouedard, V., Rimmele, G., Goffe, B., and Porcherie, O., "Mitigation strategies for the risk of CO2 migration through wellbores," in IADC/SPE drilling conference, 2006: Society of Petroleum Engineers.
    [9] Birol, F., "Key world energy statistics," International Energy Agency(IEA), 2017.
    [10] Brad, P. et al., "global status of ccs targeting climate change 2019," Global CCS Institute, Melbourne, Australia, 2019.
    [11] Brandl, A., Cutler, J., Seholm, A., Sansil, M., and Braun, G., "Cementing solutions for corrosive well environments," SPE Drilling & Completion, vol. 26, no. 02, pp. 208-219, 2011.
    [12] Burck, J., Hagen, U., Höhne, N., Nascimento, L., and Bals, C., "Climate change performance index(CCPI2020)," Germanwatch, NewClimate Institute & Climate Action Network, 2019 2020.
    [13] Carey, J. W. et al., "Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA," International Journal of Greenhouse Gas Control, vol. 1, no. 1, pp. 75-85, 2007.
    [14] Crow, W., Carey, J. W., Gasda, S., Williams, D. B., and Celia, M., "Wellbore integrity analysis of a natural CO2 producer," International Journal of Greenhouse Gas Control, vol. 4, no. 2, pp. 186-197, 2010.
    [15] de Sena Costa, B. L., de Oliveira Freitas, J. C., Santos, P. H. S., da Silva Araújo, R. G., dos Santos Oliveira, J. F., and de Araújo Melo, D. M., "Study of carbonation in a class G Portland cement matrix at supercritical and saturated environments," Construction and Building Materials, vol. 180, pp. 308-319, 2018.
    [16] Duguid, A. and Scherer, G. W., "Degradation of oilwell cement due to exposure to carbonated brine," International journal of greenhouse gas control, vol. 4, no. 3, pp. 546-560, 2010.
    [17] Ershadi, V., Ebadi, T., Rabani, A., Ershadi, L., and Soltanian, H., "The effect of nanosilica on cement matrix permeability in oil well to decrease the pollution of receptive environment," International Journal of Environmental Science and Development, vol. 2, no. 2, p. 128, 2011.
    [18] Gan, M. et al., "Micro-CT Characterization of Wellbore Cement Degradation in 〖SO〗_4^(2-)–Bearing Brine under Geological CO2 Storage Environment," Geofluids, vol. 2019, 2019.
    [19] Garnier, A. et al., " CO2-Induced Changes in Oilwell Cements Under Downhole Conditions: First Experimental Results," in SPE Annual Technical Conference and Exhibition, 2010: Society of Petroleum Engineers.
    [20] Gasda, S., Bachu, S., and Celia, M., "The potential for CO2 leakage from storage sites in geological media: analysis of well distribution in mature sedimentary basins," Environmental Geology, vol. 46, no. 6-7, pp. 707-720, 2004.
    [21] Gu, T. et al., "Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions," Construction and Building Materials, vol. 130, pp. 92-102, 2017.
    [22] Haghi, R. K., Chapoy, A., Peirera, L. M., Yang, J., and Tohidi, B., "pH of CO2 saturated water and CO2 saturated brines: Experimental measurements and modelling," International Journal of Greenhouse Gas Control, vol. 66, pp. 190-203, 2017.
    [23] Hossain, M. and Amro, M., "Drilling and completion challenges and remedies of CO2 injected wells with emphasis to mitigate well integrity issues," in SPE Asia Pacific Oil and Gas Conference and Exhibition, 2010: Society of Petroleum Engineers.
    [24] Irons, T., McPhserson, B., Moodie, N., Krahenbuhl, R., and Li, Y., "Integrating geophysical monitoring data into multiphase fluid flow reservoir simulation," ASEG Extended Abstracts, vol. 2018, p. 1, 12/01 2018, doi: 10.1071/ASEG2018abW10_3B.
    [25] Jeon, I. K., Qudoos, A., Jakhrani, S. H., Kim, H. G., and Ryou, J.-S., "Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder," Powder Technology, vol. 359, pp. 181-189, 2020.
    [26] Jeong, Y. J., Youm, K. S., and Yun, T. S., "Effect of nano-silica and curing conditions on the reaction rate of class G well cement exposed to geological CO2-sequestration conditions," Cement and Concrete Research, vol. 109, pp. 208-216, 2018.
    [27] Jiang, Z., Ren, Q., Li, H., and Chen, Q., "Silicon carbide waste as a source of mixture materials for cement mortar," Frontiers of Environmental Science & Engineering, vol. 11, no. 5, p. 2, 2017.
    [28] Kim, J. J., Rahman, M. K., Al-Majed, A. A., Al-Zahrani, M. M., and Taha, M. M. R., "Nanosilica effects on composition and silicate polymerization in hardened cement paste cured under high temperature and pressure," Cement and Concrete Composites, vol. 43, pp. 78-85, 2013.
    [29] Lackner, K. S., "A guide to CO2 sequestration," Science, vol. 300, no. 5626, pp. 1677-1678, 2003.
    [30] Lesti, M., Tiemeyer, C., and Plank, J., " CO2 stability of Portland cement based well cementing systems for use on carbon capture & storage (CCS) wells," Cement and concrete research, vol. 45, pp. 45-54, 2013.
    [31] Li, C., Zhang, K., Wang, Y., Guo, C., and Maggi, F., "Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China," International Journal of Greenhouse Gas Control, vol. 45, pp. 216-232, 2016.
    [32] Li, M., He, M., Yu, Y., Deng, S., and Guo, X., "Mechanical properties and microstructure of oil-well cement stone enhanced with submicron SiC whiskers," Journal of Adhesion Science and Technology, vol. 33, no. 1, pp. 50-65, 2019.
    [33] Lin, Y. et al., "Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions," Corrosion science, vol. 74, pp. 13-21, 2013.
    [34] Lorek, A., Labus, M., and Bujok, P., "Wellbore cement degradation in contact zone with formation rock," Environmental Earth Sciences, vol. 75, no. 6, p. 499, 2016.
    [35] Mahmoud, A. A. and Elkatatny, S., "Effect of the Temperature on the Strength of Nanoclay-Based Cement under Geologic Carbon Sequestration," in Proceedings of the 2019 AADE National Technical Conference and Exhibition, Denver, CO, USA, 2019, pp. 9-10.
    [36] Metz, B., Davidson, O., and De Coninck, H., Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, 2005.
    [37] Moroni, N., Santra, A. K., Ravi, K., and Hunter, W. J., "Holistic design of cement systems to survive CO2 environment," in SPE Annual Technical Conference and Exhibition, 2009: Society of Petroleum Engineers.
    [38] Shevaldykin, V. G., Samokrutov, A. A., and Kozlov, V. N., "Ultrasonic low-frequency short-pulse transducers with dry point contact. Development and application," in International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE) in Berlin, Germany, 2003.
    [39] Silva, E. K. and Meireles, M. A. A., "Encapsulation of food compounds using supercritical technologies: applications of supercritical carbon dioxide as an antisolvent," Food Public Health, vol. 4, no. 5, pp. 247-258, 2014.
    [40] Talberg, A. S., Johansen, T. F., and Larsen, I., "Laboratory experiments on ultrasonic logging through casing for barrier integrity validation," in ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, 2017: American Society of Mechanical Engineers Digital Collection.
    [41] Walsh, S. D., Du Frane, W. L., Mason, H. E., and Carroll, S. A., "Permeability of wellbore-cement fractures following degradation by carbonated brine," Rock Mechanics and Rock Engineering, vol. 46, no. 3, pp. 455-464, 2013.
    [42] Wang, P., Qu, Z., and Zhang, J. B., "Research on Carbon Dioxide corrosion of Cement stones of Oil well Casings under high temperature and high pressure," in Advanced Materials Research, 2012, vol. 413: Trans Tech Publ, pp. 24-28.
    [43] Xu, B., Yuan, B., Wang, Y., Zeng, S., and Yang, Y., "Nanosilica-latex reduction carbonation-induced degradation in cement of CO2 geological storage wells," Journal of Natural Gas Science and Engineering, vol. 65, pp. 237-247, 2019.
    [44] Zawrah, M., El-Kheshen, A., and El-Maghraby, A., "Effect of SiC–graphite–Al-metal addition on low-and ultra-low cement bauxite castables," Ceramics International, vol. 38, no. 5, pp. 3857-3862, 2012.
    [45] Zhang, M. and Talman, S., "Experimental study of well cement carbonation under geological storage conditions," Energy Procedia, vol. 63, pp. 5813-5821, 2014.
    [46] 江健豪, "超臨界二氧化碳環境下對套管水泥力學與物化性質之影響," 碩士 論文, 國立成功大學資源工程研究所, 台灣, 2012.
    [47] 行政院環保署. "中華民國國家溫室氣體排放清冊報告." http://unfccc.saveoursky.org.tw/nir/tw_nir_2019.php (accessed.
    [48] 李冠穎, "二氧化碳環境下對油井水泥物理性質及化學性質之影響," 碩士 論文, 國立成功大學資源工程研究所碩士論文, 台灣, 2011.
    [49] 林唐筠, "超臨界二氧化碳環境下添加不同鈣矽比摻料對套管水泥力學、物理與化學性質之研究," 碩士 論文, 國立成功大學資源工程研究所, 台灣, 2017.
    [50] 林殿順, "臺灣二氧化碳地質封存研究──子計畫一:濱海封存潛能之研究," NSC100-3113-E-008-002, 2011.
    [51] 能源政策之橋接與溝通小組. "碳封存及捕獲知識網." http://www.nepii.tw/KM/CCS/index.html (accessed.
    [52] 張育源, "超臨界二氧化碳環境不同溫度下 API G 級水泥力學性質之研究," 專題 論文, 國立成功大學資源工程研究所, 台灣, 2014.
    [53] 許真惠, "超臨界二氧化碳環境下對添加碳化矽之套管水泥基本性質之研究," 碩士 論文, 國立成功大學資源工程研究所, 台灣, 2018.
    [54] 郭俊志, "二氧化碳封存環境下對封固材料基本性質影響之研究," 博士 論文, 國立成功大學資源工程研究所, 台灣, 2015.
    [55] 陳宏銓, "超臨界二氧化碳環境下對添加矽酸化合物套管水泥性質之研究," 碩士 論文, 國立成功大學資源工程研究所, 台灣, 2017.
    [56] 陳思螢, "超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究," 碩士 論文, 國立成功大學資源工程研究所, 台灣, 2012.
    [57] 黃斌, 劉練波, and 許世森, "二氧化碳的捕獲和封存技術進展," 2007.
    [58] 楊昀叡, "二氧化碳環境下纖維摻料對套管水泥性質之研究," 碩士 論文, 國立成功大學資源工程研究所, 台灣, 2011.
    [59] 劉浙仁, 譚志豪, and 冀樹勇, "臺灣發展二氧化碳地質封存之場址評選策略研議," 中興工程, vol. 131, pp. 19-28, 2016.
    [60] 劉蘭翠, 曹東, and 王金南, "碳捕獲與封存技術潛在的環境影響及對策建議," 氣候變化研究進展, vol. 6, no. 04, pp. 290-295, 2010-07-30 2010. [Online]. Available: {http://www.climatechange.cn/CN/abstract/article_320.shtml}.
    [61] 歐陽湘. (2015) 二氧化碳地質封存. 科學發展月刊. 6-11.
    [62] 謝欣婷, "超臨界二氧化碳環境下對添加碳化矽套管水泥力學與物化性質之研究," 碩士 論文, 國立成功大學資源工程研究所, 台灣, 2016.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE