簡易檢索 / 詳目顯示

研究生: 楊凱仲
Yang, Kai-Zhong
論文名稱: 週期金屬結構以表面電漿極化生成連續頻譜中的束縛態
Bound States in the Continuum Produced by Surface Plasmon Polarization in Periodic Metallic Structures
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 連續頻譜中的束縛態表面電漿極化表面電漿共振
外文關鍵詞: FDTD, BICs, SPP, LSPR
相關次數: 點閱:134下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 束縛態是指波被局部或完全的束縛在某特定頻段中,換言之決定系統內是否存在著束縛態可由特定頻段做判定,若頻段坐落於連續頻譜之中,則此束縛態將有兩種情形,一種是有能量洩漏的共振模態,是為局部性束縛之離散共振模態,一種是無共振模態,是為連續頻譜中的束縛態(Bound states in the continuum, BIC)。而BICs又可藉由其生成的機制不同分成被對稱性保護之束縛態(symmetry-protected BICs)以及非對稱性保護之束縛態(non-symmetry-protected / accidental BICs)等兩種。
    BICs生成之相關研究於近年不斷地被提出,例如利用光子-電漿子系統或電漿子-電介質結構系統加以混合形成一種hybrid BICs,而現下也能夠將研究之成果廣泛應用於光感測、雷射及濾波等領域。亦可嘗試透過金屬導體、光子晶體等材質產生表面電漿極化(surface plasmon polaritons, SPPs)以生成BICs,但由於金屬高損耗特性,於是僅以SPP方式所生成的Quality factor通常不明顯。進一步考慮SPP機制下形成的局部表面電漿共振(Localized Surface plasmon resonance, LSPR),因其電磁場震盪方式與生成於特定頻段等特性,可將其視為一種侷限態,藉由模擬與研究討論SPP與LSPR相互影響並生成BICs的可能及原因。
    本論文研究使用有限差分時域法進行數值模擬,並以單一介面之奈米凹槽週期性結構、有限長薄板之奈米週期性結構等兩種系統分別討論兩種系統下,能帶結構上各個模態的分佈情形、相互的影響以及BICs的產生。於單一介面之奈米凹槽週期性結構之模擬結果可發現在特定頻段中若SPP傳播模態與LSPR侷限態同時產生、共存,其中亦有High Q factor的存在,此High Q factor點即此系統所產生的一種非對稱性保護之束縛態(accidental BICs)。於有限長薄板之奈米週期性結構之模體結果可發現在特定頻段中若SPP傳播模態與各階LSPR侷限態同時生成、重疊,且對應階數LSPR之Linewidth足夠窄則可產生High Q factor,而這些High Q factor點上的SPP與奇數、偶數階LSPR各自之週期結構對稱性發現SPP傳播模態與奇數階LSPR等兩模態震盪於金屬結構左右之震盪電荷分佈方式不同,使兩模態相互干涉、相消產生了accidental cancellation,進而生成非對稱性保護之束縛態(accidental BICs)。

    Bound state means that the wave is completely bound in a specific frequency band, in other words, whether a bound state exists in the system can be determined by a specific mode with infinite quality factor. If the frequency band is located in the continuous spectrum, there are two situations, one is a resonance mode with energy leakage, which is a discrete resonance mode with finite quality factor, and the other is a mode decoupled to the outside with infinite quality factor, which is called Bound states in the continuum (BIC). BICs can be divided into two types: symmetry-protected BICs and non-symmetry-protected/accidental BICs.
    Researches related to the generation of BICs have been continuously proposed in recent years. For example, the plasmonics and dielectric structure are mixed to form a hybrid BICs. The BIC research can also be widely used in the fields of optical sensing, laser and filtering. In this work, we try to generate surface plasmon polaritons (SPPs) BICs in periodic metallic structure. Due to the high material loss characteristics of metal, plasmonic modes typically have low quality factor. BIC in plasmonic can eliminate the optical loss and lead to high quality factor only limited by the material absorption. First, we try to find the symmetric protected BICs. Further considering the localized surface plasmon resonance (LSPR) along with the SPP, the accidental BIC due to the cancellation of LSP and SPP radiation can be found. Finally we discuss the possible mechanisms for the generation of BICs under the interaction of SPP and LSPR.
    In this thesis, we use Finite-Difference Time-Domain method to numerically simulate Nano grooved periodic structure at a single interface and Nano periodic structure of finite-length metal slab. In the two systems, the field distribution of each mode at different k point on the band structure, the mutual influence of LSPR and SPP on the generation of BICs are discussed.
    In the nano grooved periodic structure with a single SPP interface, the accidental BICs with High Q factor can be found that if the SPP propagation mode and the LSPR occur simultaneously in a specific frequency band. In the nano metallic periodic structure with finite-length thin metal slab, both symmetry protected BIC and accidental BIC can be found. Symmetry protected BICs are found at the  and X point. Accidental BIC are found when + SPP propagation mode and the odd LSPR mode of the metallic slab occur simultaneously. The charge oscillation symmetry of the SPP mode and the odd-order LSPR mode are opposite and lead to the cancellation of each radiation, resulting in the accidental BICs.

    中文摘要 I Abstract II 誌謝 IX 目錄 X 圖目錄 XII 符號 XVII 第一章 序論 1 1.1前言 1 1.2研究動機 6 1.3本文內容 7 第二章 研究相關理論簡介 8 2.1 連續頻譜中的束縛態 (Bound states in the continuum) 8 2.2 能帶結構 (Band structure) 15 2.3表面電漿極化 (Surface plasmon polarizations) 17 2.4局部表面電漿共振 (Localized Surface plasmon resonance) 26 2.5多模耦合理論 (Theory for multimode coupling) 28 第三章 研究方式 36 3.1 馬克士威爾方程式 (Maxwell’s equations) 36 3.2 有限差分時域法 (Finite difference time domain method, FDTD) 39 3.3 卷積完美匹配層 (Convolutional perfect matching layer, CPML) 42 3.4 Drude model 45 3.5 週期性邊界條件 (Periodic boundary condition) 48 3.6 Order N 49 3.7 帕德近似法 (Pade approximant) 50 第四章 研究結果與討論 52 4.1 前言 52 4.1.1 模擬空間設置 52 4.1.2 於各系統中SPPω+、SPPω-及LSPR模態分佈 53 4.2 金屬介面含奈米凹槽之週期性結構 55 4.2.1 Band structure與其分裂現象 55 4.2.2 Quality factor分佈 58 4.2.3 SPP傳播模態與LSPR侷限態之模態分佈 60 4.3 有限長度奈米金屬薄板之週期性結構 63 4.3.1 Band structure中 SPP與LSPR分佈情形 63 4.3.2 Band structure與其分裂現象 66 4.3.3 Quality factor 分佈 70 4.3.4 各類BICs的生成 74 第五章 結論與未來展望 81 5.1結論 81 5.2未來展望 82 參考文獻 83

    [1]Hsu, C., Zhen, B., Stone, A. et al., “Bound states in the continuum.” Nat Rev Mater 1, 16048 (2016).
    [2]von Neumann, J. and Wigner, E., “U ̈ber merkwu ̈rdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465-467 (1929).
    [3]J. on NeumannE. P. Wigner, ’’Uber merkwu ̈rdige diskrete Eigenwerte. Uber das Vergalten von Eigenwerten bei adiabatischen Prozessen, ’’Physikalische Zeitschrift 30, 465.(1929)
    [4]Suh, W. et al., “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs.” Appl. Phys. Lett. 82, no. 13 (2003).
    [5]Meier, M. et al., “Laser action from two-dimensional distributed feedback in photonic crystals.” Appl. Phys. Lett. 74(1), 7–9 (1999).
    [6]Foley, J. M., Young, S. M. & Phillips, J. D., “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J].” Phys. Rev. B. 89(16), 165111 (2014).
    [7]Shaimaa I. Azzam et al., “Formation of Bound States in the continuum in Hybrid Plasmonic-Photonic Systems.” Phys. Rev. Lett. 121, 253901 (2018).
    [8]Meudt, M. et al., “Hybrid Photonic–Plasmonic Bound States in Continuum for Enhanced Light Manipulation.” Adv. Optical Mater 8, 2000898 (2020).
    [9]H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
    [10]J. N. Liu, Q. Huang, K. K. Liu, S. Singamaneni, and T. C. Brian,“Nanoantenna−Microcavity Hybrids with Highly Cooperative Plasmonic−Photonic Coupling,” Nano Lett. 17(12), 7569–7577 (2017).
    [11]B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photonics 5(2), 456–461 (2018).
    [12]H. Zhang, Y. C. Liu, C. Wang, N. Zhang, and C. Lu, “Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V,” Opt. Lett. 45(17), 4794 (2020).
    [13]Jin Xiang. et al., “Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system.” Nanophotonics 9(1), 133-142 (2020).
    [14]In Cheol Seo, et al., “Fourier-plane investigation of plasmonic bound states in the continuum and molecular emission coupling.” Nanophotonics 9(15), 4565-4577 (2020).
    [15]S. T. Ha, Y. H. Fu, N. K. Emani, et al., “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol., vol. 13, p. 1042, (2018).
    [16]H. M. Doeleman, F. Monticone, W. Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics, vol. 12, p. 397, (2018).
    [17]Baranov DG, Wersall M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong light matter interactions. ACS Photonics. 5,24–42 (2018).
    [18]N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
    [19]Friedrich, H. & Wintgen, D., “Interfering resonances and bound states in the continuum.” Phys. Rev. A 32, 3231–3242 (1985).
    [20]Zhen, B. et al., “Topological Nature of Optical Bound States in the Continuum.” Phys. Rev. Lett. 113, no. 25 (2014).
    [21]C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Nature (London) 499, 188 (2013).
    [22]F Bloch, “U ̈ber die quantenmechanik der elektronen in kristallgittern.” Zeitschrift fu ̈r physic 52(7-8), 555-600 (1929).
    [23]Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267-297(2007)
    [24]Sun, S., Ding, Y., Li, H., Hu, P., Cheng, C. W., Sang, Y., Cao, F., Hu, Y., Alù, A., Liu, D., Wang, Z., Gwo, S., Han, D., & Shi, J. Tunable Plasmonic Bound States in the Continuum in the Visible Range. PHYSICAL REVIEW B 103, 045416. (2021)
    [25]Kane Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media." IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307 (1966).
    [26]Jean-Pierre Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves.” Journal of computational physics 114(2), 185 (1994).
    [27]J. Alan Roden, Stephen D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media.” Microwave and optical technology letters 27(5), 334 (2000).
    [28]S. D. Gedney and B. Zhao, "An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML." IEEE Transactions on Antennas and Propagation 58(3), 838 (2010).
    [29]P. Drude, “Zur Elektronentheorie der Metalle.” Annalen der physic 306(3), 566 (1900).
    [30]H. Pade ́, “Sur la représentation approchée d’une fonction par des fractions rationnelles.” Annales scientifiques de l’É.N.S., tome 9 (1892).
    [31]Chen KP, Yang JH, Huang ZT, Maksimov DN, Pankin PS, Timofeev IV, Hong KB et al. Low-Threshold Bound State in the Continuum Lasers in Hybrid Lattice Resonance Metasurfaces. Laser and Photonics Reviews. Oct;15(10). 2100118. (2021)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE