簡易檢索 / 詳目顯示

研究生: 詹益朋
Chan, Yi-Peng
論文名稱: 含黏彈支承非線性轉子軸承系統之動態分析
Dynamic Analysis of a Nonlinear Rotor-Bearing System with Viscoelastic Supports
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 63
中文關鍵詞: 有限元素法非線性軸承轉子軸承系統黏彈支承
外文關鍵詞: Finite Element Method, Nonlinear Bearing, Rotor-Bearing System, Viscoelastic Supports
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有限元素法分析含黏彈支承之非線性轉子軸承系統的動態響應。系統由轉軸、轉盤、非線性軸承及黏彈支承所構成;轉軸以含旋轉慣量(rotary inertia)及剪力變形效應的Timoshenko樑來模擬;轉盤假設為含質量偏心及陀螺效應(gyroscopic effect)的剛體;非線性軸承則以線性彈簧、非線性彈簧及阻尼來模擬;黏彈支承由線性彈簧與線性阻尼的組合來模擬。本文探討由不同勁度係數與不同阻尼係數所組合而成之黏彈支承對系統之共振頻率及穩態響應的影響。由數值結果顯示,當黏彈支承的勁度係數增大時,系統的共振頻率與共振振幅也隨之增大。當黏彈支承的阻尼係數增大時,系統的共振振幅起初會隨之降低;但當黏彈支承的阻尼係數增大至使系統之共振振幅為最小後,系統的共振振幅將隨著黏彈支承的阻尼係數增大而增大。

    Dynamic response of a nonlinear rotor-bearing system with viscoelastic supports is analyzed by using the finite element method in this thesis. Rotating shaft of the system is modeled as Timoshenko beam, which includes the effects of rotary inertia and shear deformation. Disks are considered to be rigid with their mass eccentricities and gyroscopic effect taken into account. Nonlinear bearing is simulated by the characteristics of cubic nonlinear springs, linear springs and linear dampers. Viscoelastic support is simulated by the combination of linear springs and linear dampers. The effects of stiffness coefficient and damping coefficient of viscoelastic support on the resonance frequency and steady-state response of the system are investigated. Numerical results of this research show that, as the stiffness coefficient of viscoelastic support increases, the resonance frequency and the resonance amplitude of the system increase, and as the damping coefficient of viscoelastic support increases, the resonance amplitude of the system first decreases and then increases.

    摘要.......................................................i ABSTRACT..................................................ii 誌謝.....................................................iii 表目錄....................................................vii 圖目錄...................................................viii 符號說明....................................................x 第一章 緒論..............................................1 1-1前言...................................................1 1-2文獻回顧................................................2 1-3本文研究................................................6 第二章 轉子軸承系統運動方程式推導............................8 2-1座標系統................................................8 2-2運動方程式..............................................9 2-2-1轉盤................................................9 2-2-2轉軸...............................................10 2-2-3軸承...............................................12 2-2-4系統運動方程式.......................................14 2-3動態特性分析............................................14 第三章 黏彈支承..........................................17 3-1黏彈支承模型............................................17 3-2黏彈支承之運動方程式.....................................20 3-3含黏彈支承轉子軸承系統之穩態響應分析........................21 第四章 數值模擬結果與討論 ..................................24 4-1程式驗證...............................................24 4-2 轉子軸承系統動態特性分析.................................25 4-2-1軸承勁度之影響.......................................25 4-2-2軸承阻尼之影響.......................................26 4-3含黏彈支承之非線性轉子軸承系統.............................26 4-3-1黏彈支承對非線性轉子軸承系統穩態響應之影響................27 4-3-2黏彈支承勁度係數之影響.................................28 4-3-3黏彈支承阻尼係數之影響.................................29 4-3-4黏彈支承勁度係數與阻尼係數耦合之影響.....................30 第五章 結論.............................................32 參考文獻...................................................34 附錄一.....................................................38 附錄二.....................................................39

    [1] Ruhl, R. L., and Booker, J. F., 1972, “A Finite Element Model for Distributed Parameter Turborotor System,” ASME Journal of Engineering for Industry, Vol. 94, pp. 126-132.
    [2] Nelson, H. D., and McVaugh, J. M., 1976, “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME Journal of Engineering for Industry, Vol. 98, pp. 593-600.
    [3] Nelson, H. D., 1980, “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME Journal of Mechanical Design, Vol. 102, pp. 793-803.
    [4] Dym, C.L., and Shames, I. H., 1973, Solid Mechanics─A Variational Approach, New York: McGraw-Hill.
    [5] Eshleman, R. L., and Eubanks, R. A., 1969, “On the Critical Speeds of a Continuous Rotor,” ASME Journal of Engineering for Industry, Vol. 91, pp. 1180-1188.
    [6] Adams, M. L., 1980, “Nonlinear Dynamics of Flexible Multi-Bearing Rotors,” Journal of Sound and Vibration, Vol. 71, pp. 129-144.
    [7] Hassenpflug, H. L., Flack, R. D., and Gunter E. J., 1981, “Influence of Acceleration on the Critical Speed of a Jeffcott Rotor,” ASME Journal of Engineering for Power, Vol. 103, pp. 108-113.
    [8] Lee, A. C., and Kang Y., 1992, “Transient Analysis of an Asymmetric Rotor-Bearing System during Acceleration,” ASME Journal of Engineering for Industry, Vol. 114, pp. 465-475.
    [9] Ozgu ̈ven, N. H., and Ozkan, L. Z., 1984, “Whirl Speeds and Unbalance Response of Multi-bearing Rotors Using Finite Elements,” ASME Journal of Vibration and Acoustics, Vol. 106, pp. 72-79.
    [10] Yamamoto, T., Ishida, Y., Ikedam, T., and Yamada, M., 1981, “Subharmonic and Summed-and-Differential Harmonic Oscillations of an Unsymmetrical Rotor,” Bulletin of the JSME, Vol. 24, No. 187, pp.192–199.
    [11] Zu, J. W., and Ji, Z., 2002, “An Improved Transfer Matrix Method for Steady-State Analysis of Nonlinear Rotor-Bearing Systems,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 303-310.
    [12] Lee, A. C., Kang, Y., and Liu, S. L., 1993, “Steady-State Analysis of a Rotor Mounted on Nonlinear Bearing by the Transfer Matrix Method,” International Journal of Mechanical Sciences, Vol. 35, No. 6, pp. 479-490.
    [13] Leaderman, H., and Marvin, R. S., 1953, “Dynamic Compliance, Dynamic Modulus, and Equivalent Voigt and Maxwell Models for Polyisobutylene,” Journal of Applied Physics, Vol. 24, pp. 812-813.
    [14] Bland, D. R., and Lee, E. H., 1956, “On the Determination of a Viscoelastic Model for Stress Analysis of Plastics,” ASME Journal of Applied Mechanics, Vol. 23, pp. 416-420.
    [15] Ungar, E. E., and Kerwin, E. M., 1962, “Loss Factors of Viscoelastic Systems in Terms of Energy Concept,” Journal of the Acoustical Society of America, Vol. 34, pp. 954-957.
    [16] Kapur, A. D., Nakra, B. C., and Chawla, D. R., 1977, “Shock Response of Viscoelastic Damped Beam,” Journal of Sound and Vibration, Vol. 55, pp. 351-362.
    [17] Jones, D. I. G., 1988, Handbook of Viscoelastic Vibration Damping, New York: John Wiley and Sons.
    [18] Kulkarni, P., Pannu, S., and Nakra, B. C., 1993, “Unbalance Response and Stability of a Rotating System with Viscoelastically Supported Bearings,” Mechanism and Machine Theory, Vol. 28, pp. 427-436.
    [19] Lakes, R., 2009, Viscoelastic Materials, New York: Cambridge University Press.
    [20] Lalanne, M., and Ferraris, G., 1998, Rotordynamics Prediction in Engineering, 2^nd ed., New York: John Wiley and Sons.
    [21] 蘇友志,2012,含黏彈支承轉子軸承系統之動態分析,國立成功大
    學航空太空工程研究所碩士論文。
    [22] 黃忠立,1987,轉子-軸承系統在多臨界轉速下之輕量化設計,國立
    成功大學航空太空工程研究所碩士論文。
    [23] 阮競揚,1997,含橫向裂縫的轉子軸承系統之動態特性分析,國立
    成功大學航空太空工程研究所碩士論文。
    [24] 吳穎鴻,1994,轉子軸承系統之應力分析及疲勞壽命預估,國立成
    功大學航空太空工程研究所碩士論文。

    無法下載圖示 校內:2018-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE