簡易檢索 / 詳目顯示

研究生: 陳皇旻
Chen, Huang-Min
論文名稱: 多孔陽極化氧化鋁模板之製作及其壓印奈米結構的光學性質
Fabrication of nanoporous anodic alumina templates and the optical property of imprinted nanostructures
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 奈米壓印光子晶體抗反射陽極化氧化鋁
外文關鍵詞: anodic alumina, antireflection, photonic crystal, nanoimprinting
相關次數: 點閱:82下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 週期性奈米結構的光學元件有十分廣泛的應用,包含光子晶體結構的濾光元件與蛾眼結構的抗反射元件。
    本論文製作不同孔洞尺寸與形貌奈米結構的多孔質陽極化氧化鋁,並以此為模板,結合奈米壓印技術,製備具有週期性奈米結構的光學元件,並測試壓印結構之光學特性。
    首先以聚乙二醇為添加劑,藉由不同聚乙二醇的添加量改變電解質的電阻,有效控制陽極化的電流密度,達到控制陽極化氧化鋁成長速率的效果。其次,反應面積亦會影響氧化鋁成長速率,反應面積與成長速率有呈反比的趨勢。探討不同尺寸與形貌的奈米結構對於光學性質影響發現,柱狀磷酸氧化鋁及壓印圓柱狀奈米結構具有光子晶體的性質,可濾去藍光。隨著結構尺寸由100nm增加到410nm,反射光波峰由421nm位移到441nm。改變陽極化與蝕刻擴孔時間可以得到不同高度與深寬比的尖錐狀磷酸氧化鋁,用以壓印之圓錐狀奈米結構,能消除基材的光學介質接面,其中較高深寬比的結構具有較長的等效介質範圍,可使光學穿透率由91%提升至95%,但由於結構本身為光子晶體,而使藍光波段之穿透率下降。以尖錐狀草酸氧化鋁壓印圓錐狀奈米結構能提升全波段可見光的光學性質,而使光學反射率由8.5%至降低至4.5%,穿透率則由91%提升至95%;利用雙面壓印的方式,能消除基材前後兩層光學介質接面,使反射率由9%降至1%,穿透率則由91%提升至99%。

    The optical device with periodic nano structure has many applications, including color filter with photonic crystal and antireflection device with moth eyes structure.
    In this thesis, we fabricated porous anodic alumina with different dimension and morphology, then used the alumina as a mold to perform nanoimprinting for preparing optical devices with periodic nanostructure.
    In anodization system, we could control the growth characteristics of anodic alumina by adding different amounts of polyethyleneglycol (PEG), because PEG is a modulator in electrolyte. The PMMA nanopillar structure obtained by imprinting using the alumina stamp with straight structure is a kind of photonic crystal, it could allow most visible light but exhibit a blue appearance. The peak of reflection light shifts from 421nm to 441nm with increasing pillar dimension from 100nm to 410nm. We could also get nanocone structure obtained by imprinting using the alumina with tapered hole structure, fabricated by sequential anodization and etching steps. The nanocone structure obtained by using anodic alumina mold from phosphoric acid electrolyte could eliminate the junction of media between air and substrate. The structure with high aspect ratio has a wider effective medium region, so it could increase the optical transmittance from 91% to 95%. This structure is still a photonic crystal structure, so the transmittance in bluish purple light region is decreased. The nanocone structure imprinted using acid alumina anodizaed in oxalic acid could increase transmittance in all visible light wavelengths, and it decreases optical reflectance from 8.5% to 4.5%, but increases transmittance from 91% to 95%. We could eliminate junction of media on the top and bottom surfaces of the substrate by double layer imprinted PMMA nanocone strustures, where the optical reflectance could decrease from 8.5% to 1%, but the optical transmittance increases from 91% to 99%.

    摘要 I Abstract II 總目錄 III 圖目錄 V 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 第二章 文獻回顧 5 2-1多孔質陽極化氧化鋁 5 2-1-1陽極化氧化鋁反應 5 2-1-2多孔質陽極化氧化鋁形態 5 2-1-3多孔質陽極化氧化鋁成長機制 6 2-1-4製程條件對氧化鋁孔洞形貌的影響 11 2-2奈米壓印技術 14 2-3光子晶體 14 2-3-1光子晶體的光學性質 14 2-3-2光子晶體的製程 15 2-4抗反射膜 18 2-4-1抗反射膜的種類與應用 18 2-4-2抗反射膜的原理 18 2-4-3抗反射膜的製作 21 第三章 研究方法與步驟 23 3-1 流程 23 3-2設備 24 3-3材料 27 3-4步驟 28 3-5結果分析 29 第四章 結果與討論 30 4-1 陽極化氧化鋁成長機制探討 30 4-1-1 添加聚乙二醇對陽極化氧化鋁成長特性之影響 30 4-1-2面積對陽極化氧化鋁厚度的影響 33 4-1-3不同濃度的磷酸之蝕刻速率對陽極化氧化鋁形貌的影響 43 4-2陽極化氧化鋁與壓印後之高分子圖案對光學性質的影響 44 4-2-1孔洞大小對於陽極化氧化鋁光學性質的影響 44 4-2-2直徑大小對於圓錐狀奈米柱光學性質的影響 45 4-2-3奈米結構的深寬比對光學性質的影響 56 4-2-4奈米結構的尺寸對於光學性質的影響 64 第五章 結論 77 未來展望 79 參考文獻 81 誌謝 87

    [1] 陳燕儀, 呂世源, "光學膜-光的魔術師", 科學發展, 414 (2007) 62-67.
    [2] 黃珩春, 陳政寰, 楊詔中, 黃戎巖, "奈米光柵之原理與應用", 機械工業雜誌, 257 (2004) 156-162.
    [3] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics", Physical Review Letters, 58 (1987) 2059-2062.
    [4] S. John, "Strong localization of photons in certain disordered dielectric superlattices", Physical Review Letters, 58 (1987) 2486-2489.
    [5] 鍾儀文, "以膠體製程製備光子晶體及其性質之探討", 國立成功大學材料科學及工程學系博士論文, (2006).
    [6] D. J. Aiken, "High performance anti-reflection coatings for broadband multi-junction solar cells", Solar Energy Materials and Solar Cells, 64 (2000) 393-404.
    [7] D. H. Raguin, G. M. Morris, "Antireflection structured surfaces for the infrared spectral region", Applied Optics, 32 (1993) 1154-1167.
    [8] T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, H. Masuda, "Antireflection polymer surface using anodic porous alumina molds with tapered holes", Chemistry Letters, 36 (2007) 530-531.
    [9] C. H. Sun, P. Jiang, B. Jiang, "Broadband moth-eye antireflection coatings on silicon", Applied Physics Letters, 92 (2008) 061112.
    [10] H. J. Gao, Z. Liu, J. Zhang, G. M. Zhang, G. Y. Xie, "Precise replication of antireflective nanostructures from biotemplates", Applied Physics Letters, 90 (2007) 123115.
    [11] J. Y. Huang, X. D. Wang, Z. L. Wang, "Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes", Nanotechnology, 19 (2008) 025602.
    [12] F. Keller, "Structural features of oxide coatings on aluminum", Journal of The Electrochemical Society, 100 (1953) 411-419.
    [13] D. Almawlawi, K. A. Bosnick, A. Osika, M. Moskovits, "Fabrication of nanometer-scale patterns by ion-milling with porous anodic alumina masks", Advanced Materials, 12 (2000) 1252-1257.
    [14] W. Lee, R. Ji, U. Gosele, K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard anodization", Nature Materials, 5 (2006) 741-747.
    [15] H. Asoh, "Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al", Journal of The Electrochemical Society, 148 (2001) B152-B156.
    [16] W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gosele, "Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium", Nature Nanotechnology, 3 (2008) 234-239.
    [17] W. Lee, R. Scholz, U. Gosele, "A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum", Nano Letters, 8 (2008) 2155-2160.
    [18] D. Losic, "Preparation of Porous Anodic Alumina with Periodically Perforated Pores", Langmuir, 25 (2009) 5426-5431.
    [19] L. J. Guo, "Recent progress in nanoimprint technology and its applications", Journal of Physics D-Applied Physics, 37 (2004) R123-R141.
    [20] J. P. O. Sullivan, "The morphology and mechanism of formation of porous anodic films on aluminum", Proceedings: Biological Sciences, 317 (1970) 511-543.
    [21] W. Lee, K. Nielsch, U. Gosele, "Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization", Nanotechnology, 18 (2007) 475713.
    [22] H. Masuda, F. Hasegwa, S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution", Journal of The Electrochemical Society, 144 (1997) L127-L130.
    [23] H. Masuda, K. Yada, A. Osaka, "Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Soluiton", Japanese Journal of Applied Physics, 37 (1998) L1340-L1342.
    [24] Z. X. Su, G. Hahner, W. Z. Zhou, "Investigation of the pore formation in anodic aluminium oxide", Journal of Materials Chemistry, 18 (2008) 5787-5795.
    [25] V. P. Parkhutik, "Theoretical modelling of porous oxide growth on aluminium", Journal of Physics D: Applied Physics, 25 (1992) 1258-1263.
    [26] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina", Journal of Applied Physics, 84 (1998) 6023-6026.
    [27] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, C. H. Ye, L. D. Zhang, "Alumina nanowire arrays standing on a porous anodic alumina membrane", Nanotechnology, 15 (2004) 189-191.
    [28] Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, W. K. Kwok, G. A. Willing, J. M. Hiller, R. E. Cook, D. J. Miller, G. W. Crabtree, "Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes", Nano Letters, 2 (2002) 1293-1297.
    [29] T. Nagaura, F. Takeuchi, S. Inoue, "Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing", Electrochimica Acta, 53 (2008) 2109-2114.
    [30] T. Nagaura, F. Takeuchi, Y. Yamauchi, K. Wada, S. Inoue, "Fabrication of ordered Ni nanocones using a porous anodic alumina template", Electrochemistry Communications, 10 (2008) 681-685.
    [31] S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers", Applied Physics Letters, 67 (1995) 3114-3116.
    [32] S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint lithography with 25-nanometer resolution", Science, 272 (1996) 85-87.
    [33] P. A. Hiltner, I. M. Krieger, "Diffraction of light by ordered suspensions", Journal of Physical Chemistry, 73 (1969) 2386-2389.
    [34] H. Masuda, "Photonic Band Gap in Naturally Occurring Ordered Anodic Porous Alumina", Japanese Journal of Applied Physics, 40 (2001) L1217-L1219.
    [35] B. Wang, G. T. Fei, M. Wang, M. G. Kong, L. D Zhang, "Preparation of photonic crystals made of air pores in anodic alumina", Nanotechnology, 18 (2007) 365601.
    [36] X. Hu, Z. Y. Ling, X. H. He, S. S. Chen, "Controlling Transmission Spectra of Photonic Crystals under Electrochemical Oxidization of Aluminum", Journal of The Electrochemical Society, 156 (2009) C176-C179.
    [37] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection", Nature Photonics, 1 (2007) 176-179.
    [38] P. B. Clapham, M. C. Hutley, "Reduction of lens reflection by moth eye principle", Nature, 244 (1973) 281-282.
    [39] C. H. Sun, W. L. Min, N. C. Linn, P. Jiang, B. Jiang, "Templated fabrication of large area subwavelength antireflection gratings on silicon", Applied Physics Letters, 91 (2007) 231105.
    [40] 陳永彬, 李昭德, 張哲豪, 王倫, "以干涉微影方法製作光學抗反射結構之應用研究", 機械工業雜誌, 294 (2007) 27-35.
    [41] T. Yanagishita, K. Nishio, H. Masuda, "Antireflection polymer hole array structures by imprinting using metal molds from anodic porous alumina", Applied Physics Express, 1 (2008) 067004.
    [42] T. Yanagishita, T. Kondo, K. Nishio, H. Masuda, "Optimization of antireflection structures of polymer based on nanoimprinting using anodic porous alumina", Journal of Vacuum Science & Technology B, 26 (2008) 1856-1859.
    [43] T. Yanagishita, K. Nishio, H. Masuda, "Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina", Applied Physics Express, 2 (2009) 022001.
    [44] C. H. Sun, W. L. Min, P. Jiang, "Templated fabrication of sub-100 nm periodic nanostructures", Chemical Communications, (2008) 3163-3165.
    [45] W. L. Min, B. Jiang, P. Jiang, "Bioinspired Self-Cleaning Antireflection Coatings", Advanced Materials, 20 (2008) 3914-3918.
    [46] W. H. Huang, C. H. Sun, W. L. Min, P. Jiang, B. Jiang, "Templated Fabrication of Periodic Binary Nanostructures", Journal of Physical Chemistry C, 112 (2008) 17586-17591.
    [47] D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, "Light on the moth-eye corneal nipple array of butterflies", Proceedings of the Royal Society B-Biological Sciences, 273 (2006) 661-667.
    [48] S. Ono, M. Saito, H. Asoh, "Self-ordering of anodic porous alumina induced by local current concentration: Burning", Electrochemical and Solid State Letters, 7 (2004) B21-B24.
    [49] S. Ono, M. Saito, M. Ishiguro, H. Asoh, "Controlling factor of self-ordering of anodic porous alumina", Journal of The Electrochemical Society, 151 (2004) B473-B478.
    [50] S. Y. Zhao, K. Chan, A. Yelon, T. Veres, "Novel structure of AAO film fabricated by constant current anodization", Advanced Materials, 19 (2007) 3004-3007.
    [51] G. E. Thompson, "Porous anodic film formation on aluminium", Nature, 290 (1981) 230-232.
    [52] J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, U. Gosele, "Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers", Journal of Applied Physics, 94 (2003) 4757-4762.
    [53] H. Y. Tsai, "Finite difference time domain analysis of three-dimensional sub-wavelength structured arrays", Japanese Journal of Applied Physics, 47 (2008) 5007-5009.
    [54] J. Shieh, C. H. Lin, M. C. Yang, "Plasma nanofabrications and antireflection applications", Journal of Physics D-Applied Physics, 40 (2007) 2242-2246.

    下載圖示 校內:2014-07-29公開
    校外:2014-07-29公開
    QR CODE