| 研究生: |
葉育恩 Yeh, Yu-En |
|---|---|
| 論文名稱: |
產品外觀視覺設計 感性之研究 Kansei of Product Visual Design |
| 指導教授: |
謝孟達
Shieh, Meng-Dar |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 感性工學 、運動鞋設計 、顏色偏好 、淨最小平方法 、倒傳遞類神經網路 、田口實驗設計 |
| 外文關鍵詞: | Kansei Engineering, Sports Shoes Design, Color Appearance, Partial Least Squares, Back Propagation Network, Taguchi Experiments |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運動鞋其功能主在增加運動表現及降低運動傷害,是結合運動科技及行銷手法而生產製造的流行性產品。早期台灣鞋業製造大都以代工為主,由於1960年代橡膠原料引進,加上勞資價格低廉及可靠的生產技術水平,讓台灣逐漸成為各大廠製鞋廠的研發設計中心,更一度成為運動鞋類的生產王國。然而今日消費者已不再單純使用產品,穿運動鞋已非只為了運動,消費者所需要的也不再僅限於運動鞋產品本身,更希望藉由挑選風格獨特兼具美感的運動鞋來彰顯自我個性與時尚品味的差異。
本論文以運動鞋外觀造形及顏色組合變化為兩大探討議題,整合感性工學、實驗設計、田口實驗設計、主成分分析( PCA )、淨最小平方( PLS )及類神經網路(NN)等工具分別深入探討運動鞋造形組合及顏色變化與消費者情感反應的關聯性,透過量化分析以了解造形與顏色對消費者在運動鞋整體視覺外觀表現意象評估上所產生的影響與反應變化。研究結果發現,在運動鞋外觀造形結構變化上,鞋底乃影響本研究受測者對於運動鞋感性意象反應變化的最重要設計因子,而在重要因子挑選能力表現方面,PLS因為同時考慮到X與Y變數,因此在資料精簡上相較於PCA效能來的佳,而且接合PLS與NN為架構的預測模型正確率及效能也最佳。
在顏色組合變化上,研究結果發現黑色仍是目前台灣地區最受歡迎的運動鞋顏色,而白色當副色時,受喜愛的程度較高。此外兼具流行現代感的顏色組和也較受到喜愛,此與台灣地區大都屬於都會生活容易受到外來文化潮流影響有關。在顏色數量設定上,以三色為主的運動鞋較受到消費者喜愛,研究結果發現受測者在運動鞋意象反映變化上同時受到造形與顏色兩交互作用影響,造形對於不同形容詞辨識度強於顏色變化,受測者目光接觸到運動鞋整體輪廓外觀時,便根據自身的經驗與認知快速對運動鞋進行風格歸類,此種現象在休閒形容詞表現上最為明顯強烈,這與本研究目標為運動鞋容易讓人產生休閒聯想有關。當造形相似或變化不大時,消費者對於運動鞋整體偏好將取決於顏色組合與位置配置變化上。
Sports shoes are a classic example of the mass customization of popular products. They are also commercial products developed by combining sports technology and marketing stagy. Early shoe industry manufacturing in Taiwan primarily focused on OEM production. The introduction of rubber raw materials in the 1960s, cheap labor, and reliable production technology levels made Taiwan the research and development design center of major shoe manufacturers and the powerhouse of sports shoes production for a time. Today, however, consumers no longer simply use products, and sports shoes are not necessarily worn just for sports. Consumers require more than just the sports shoe product itself. Rather, consumers attempt to project individual personality and taste distinction by purchasing sports shoes with a unique aesthetic or external appearance.
In this study Sports shoes form and color are the two main issue to be discussed, Kansei Engineering, Experiment Design, Partial least squares (PLS), ANN Network and some statistical tool were used to investigate to determine the correlation between the form and color schemes of the running shoes and consumer emotional responses. The result show that form of the sole is the most significant design factor affecting the emotional response of the consumer regarding the overall outer appearance of the running shoe, for the screening ability aspect because the PLS also considers the Y information variable and PLS-NN performance in training and validation is superior to PCA-NN. For color aspect of the sports shoes the study result show that Black would the most popular color for sports shoes for Taiwan University students and white as the secondary color was most preferred by the participants the secondary color area increased. The shoe with modern color scheme is also preferred by all. The participants clearly preferred 3-colors designs over 2-colors and 1 -color designs. The participants first categorized and identified with the overall shoe styles based on shoe shapes, and subsequently determined their preference for the selected shoes according to their color preference.
Akcay, O., Sable, P., & Dalgin, M. H. (2012). The importance of color in product choice among young Hispanic, Caucasian, and African-American groups in the USA. International Journal of Business and Social Science, 3(6), 1–6.
Alcántara, E., Artacho, M. A., González, J. C., & García, A. C. (2005). Application of product semantics to footwear design. Part I—Identification of footwear semantic space applying differential semantics. International Journal of Industrial Ergonomics, 35, 713–725.
Au, E. Y., & Goonetilleke, R. S. (2007). A qualitative study on the comfort and fit of ladies’ dress shoes. Applied Ergonomics, 38, 687–696.
Aulinger, A., Einax, J. W., & Prange, A. (2004). Setup and optimization of a PLS regression model for predicting element contents in river sediments. Chemometrics and Intelligent Laboratory Systems, 72, 35–41.
Barnes, C. J., Childs, T. H. C., Henson, B., & Southee, C. H. (2004). Surface finish and touch—a case study in a new human factors tribology. Wear, 257, 740–750.
Bouchard, C., Mantelet, F., Aoussat, A., Solves, C., Gonzalez, J. C., Pearce, K., Lottum, C., & Coleman, S. (2009). A European emotional investigation in the field of shoe design. International Journal of Product Development, 7, 3–27.
Brunswick, E. (1952). The Conceptual Framework of Psychology. Chicago, Illinois: University of Chicago Press.
Bttdee, S. (2002). Hybrid feather modeling for sport shoe sole design. Computers & Industrial Engineering, 42, 271-279.
Çakıroğlu, R., & Acır, A. (2013). Optimization of cutting parameters on drill bit temperature in drilling by Taguchi method. Measurement, 46, 3525–3531.
Chaiwanichsiri, D., Tantisiriwat, N., & Janchai, S. (2008). Proper shoe sizes for Thai elderly. The Foot, 18, 186–191.
Chang, C. A., Lin, M. C., Leonard, M. S., & Occena, L. G. (1988). Building an expert system for the design of sport shoes. Computers & Industrial Engineering, 15, 72–77.
Chang, H. C. (2007). A measurement scale for evaluating the attractiveness of a passenger car. International Journal of Industrial Ergonomics, 37, 21–30.
Chen, X. (2009). Materials’ tactile testing and characterisation for consumer products’ affective packaging design. Materials and Design, 30, 4299–4310.
Chuang, M. C. (2011). Perceptual factors underlying user preferences toward product form of mobile phones. International Journal of Industrial Ergonomics, 27, 247–258.
Coates, D. (2003). Watches Tell More Than Time: Product Design, Information, and the Quest for Elegance. New York: McGraw-Hill.
Derler, S., Kausch, F., & Huber, R. (2008). Analysis of factors influencing the friction coefficients of shoe sole materials. Safety Science, 46, 822–832.
Dunteman, G. H. (1989). Principal Component Analysis. Newbury Park, CA: Sage.
Durand, J. F., & Sabatier, R. (1994). Additive Splines for PLS Regression. Journal of the American Statistical Association, 92, 1546–1554.
Enke, R. C., Laskowski, E. R., & Thomsen, K. M. (2009). Running shoe selection criteria among adolescent cross-country runners. PM&R, 1, 816–819.
Eriksson, L., Johansson, E., Kettaneh-Wold, N., & Wold, S. (1999). Introduction to Multi- and Megavariate Data Analysis Using Projection Methods (PCA & PLS) (p. 490). Sweden: Umetrics.
Garcia-Ruiz, A., Cabezas, L., Martin-Alvarez, P. J., & Cabezudo, D. (1998). Prediction of the ripening times of Manchego cheese using multivariate statistical analyses: A preliminary study. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 206, 382–386.
Garg, N., Kumar, A., & Maji, S. (2013). Parametric sensitivity analysis of factors affecting sound insulation of double glazing using Taguchi method. Applied Acoustics, 74, 1406–1413.
Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1–17.
Gourvénec, S., Fernández Pierna, J. A., Massart, D. L., & Rutledge, D. N. (2003). An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model. Chemometrics and Intelligent Laboratory Systems, 68, 41–51.
Gupta, A., Singh, H., & Aggarwal, A. (2011). A Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel. Expert Systems with Applications, 38, 6822–6828.
Han, S. H., & Hong, S. W. (2003). A systematic approach for coupling user satisfaction with product design. Ergonomics, 46, 1441–1461.
Han, S. H., & Kim, J. (2003). A comparison of screening methods: Selecting important design variables for modeling product usability. International Journal of Industrial Ergonomics, 32, 189–198.
Hicks, C. R. (1982). Fundamental Concepts in the Design of Experiments (3rd ed.). Harcourt Brace, Orlando, FL: Saunders College Publishing.
Horiguchi, A., & Suetomi, T. (1995). A Kansei Engineering approach to a driver/vehicle system. International Journal of Industrial Ergonomics, 15, 25–37.
Hotta, H. (2006). A Fuzzy Rule Based Personal Kansei Modeling System. 2006 IEEE International Conference on Fuzzy Systems Sheraton Vancouver Wall Centre Hotel. Vancouver, BC, Canada.
Hsiao, S. W. (1994). Fuzzy set theory on car-color design. Color Research & Application, 19, 202–213.
Hsiao, S. W., & Tsai, H. C. (2005). Applying a hybrid approach based on fuzzy neural network and genetic algorithm to product form design. International Journal of Industrial Ergonomics, 35, 411–428.
Hsiao, S. W., Chiu, F. Y., & Chen, C. S. (2008). Applying aesthetics measurement to product design. International Journal of Industrial Ergonomics, 38, 910–920.
Hsiao, S. W., Chiu, F. Y., & Lu, S. H. (2010). Product-form design model based on genetic algorithms. International Journal of Industrial Ergonomics, 40, 237–246.
Ikeda, G., Nagai, H., & Sagara, Y. (2004). Development of food Kansei model and its application for designing tastes and flavors of green tea beverage. Food Science and Technology Research, 10, 396–404.
Inuiguchi, M., & Miyajima, T. (2007). Rough set based rule induction from two decision tables. European Journal of Operational Research, 181, 1540–1553.
Ishihara, K., Ishihara, S., Matsubara, Y., & Nagamachi, M. (1997). An analysis of Kansei structure on shoes using self-organizing neural networks. International Journal of Industrial Ergonomics, 19, 93–104.
Işıklar, G., & Büyüközkan, G. (2007). Using a multi-criteria decision making approach to evaluate mobile phone alternatives. Computer Standards & Interfaces, 29, 265–274.
Jackson, J. E. (1991). A User’s Guide to Principal Components. New York: Wiley.
Jindo, T. (2009). Development of a design support system for office chairs using 3-D graphics. International Journal of Industrial Ergonomics, 15, 49–62.
Jindo, T., & Hirasago, K. (1997). Application studies to car interior of Kansei engineering. International Journal of Industrial Ergonomics, 19, 105–114.
Johnson, M. D., & John, E. (2001). Technology, Customization and Reliability. Journal of Quality Management, 6, 193–210.
Ko, D. C., Kim, D. H., & Kim, B. M. (1999). Application of artificial neural network and Taguchi method to preform design in metal forming considering workability. International Journal of Machine Tools & Manufacture, 39, 771–785.
Ko, E., Taylor, C. R., Sung, H., Lee, J., Wagner, U., Navarro, D. M. C., & Wang, F. (2011). Global marketing segmentation usefulness in the sportswear industry. Journal of Business Research, 65, 1565–1575. http://dx.doi.org/10.1016/j.jbusres.2011.02.041.
Kuehl, R. O. (2000). Design of Experiments: Statistical Principles of Research Design and Analysis (2nd ed.). Boston: Duxbury Press.
Lai, H. H. (2005). A robust design approach for enhancing the feeling quality of a product: A car profile case study. International Journal of Industrial Ergonomics, 35, 445–460.
Lamb, J. M., & Kallal, M. J. (1992). A conceptual framework for apparel design. Clothing & Textiles Research Journal, 10, 42–47.
Lin, J. J., Sun, P. T., Chen, J. J. R., Wang, L. J., Kuo, H. C., & Kuo, W. G. (2010). Applying grey model to predicting trend of textile fashion colors. Journal of The Textile Institute, 101, 360–368.
Llinares, C. (2007). Differential semantics as a Kansei Engineering tool for analysing the emotional impressions which determine the choice of neighbourhood The case of Valencia, Spain. Landscape and Urban Planning, 87, 247–257.
Luh, G. C., & Lin, C. Y. (2011). PCA based immune networks for human face recognition. Applied Soft Computing, 11, 1743–1752.
Luo, S. J., Fu, Y. T., & Zhou, Y. X. (2011). Perceptual matching of shape design style between wheel hub and car type. International Journal of Industrial Ergonomics, 42, 90–102.
Luximon, A. (2009). Shoe-last design innovation for better shoe fitting. Computers in Industry, 60, 621–628.
Luximon, A., & Luximon, Y. (2009). Shoe-last design innovation for better shoe fitting. Computers in Industry, 60, 621–628.
Ma, M. Y., Chen, C. Y., & Wu, F. G. (2007). A design decision-making support model for customized product color combination. Computers in Industry, 58, 504–518.
Marshall, D., Stuart, M., & Bell, R. (2006). Examining the relationship between product package colour and product selection in preschoolers. Food Quality and Preference, 17, 615–621.
Martens, H., & Naes, T. (1989). Multivariate Calibration. New York: Wiley
Mor, V., Stalker, M. Z., Gralla, R., Scher, H. I., Cimma, C., Park, D., . . . Oettgen, H. F. (1988). Day hospital as an alternative to inpatient care for cancer patients: A random assignment trial. Journal of Clinical Epidemiology, 41, 771–785.
Morgan, G. A., Gliner, J. A., & Harmon, R. J. (2000). Randomized experimental designs. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 1062–1063.
Nagamachi, M., Okazaki, Y., & Ishikawa M. (2006). Kansei engineering and application of the rough sets model. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 220, 736–768.
Nagamachi, M., Senuma, I., & Iwashige, R. (1974). A study of emotion-technology. Japanese Journal of Ergonomics, 10, 121–130.
Norman, D. A. (2004). Emotional Design: Why We Love (or Hate) Everyday Things. New York: Basic Books.
Osgood, C. E., Suci, C. J., & Tannenbaum, P. (1957). The measurement of meaning. Urbana: University of Illinois Press.
Pearce, K. F., & Coleman, S. Y. (2008). Modern-day perception of historic footwear and its links to preference. Journal of Applied Statistics, 35, 161–178.
Perlibakas, V. (2004). Distance measures for PCA-based face recognition. Pattern Recognition Letters, 25, 711–724.
Poveda, J. M., Garcı́a, A., Martı́n-Alvarez, P. J., Cabezas, L. (2004). Application of partial least squares (PLS) regression to predict the ripening time of Manchego cheese. Food Chemistry, 84, 29–33.
Rantanen, J., Räsänen, E., Antikainen, O., Mannermaa, J. P., & Yliruusi, J. (2001). In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: An evaluation of process-related variables and a development of non-linear calibration model. Chemometrics and Intelligent Laboratory Systems, 56, 51–58.
Saegusa, R., Sakano, H., & Hashimoto, S. (2004). Nonlinear principal component analysis to preserve the order of principal components. Neurocomputing, 61, 57–70.
Sandelands, E. (1994). Marking mass customization happen. International Journal of Physical Distribution & Logistics Management, 24(3), 11–12.
Satake, I., Xin, J. H., Tianming, T., Hansuebsai, A., Ando, K., Sato, T., . . . Ohsawa, S. (2011). A comparative study of the emotional assessment of automotive exterior colors in Asia. Progress in Organic Coatings, 72, 528–540.
Shadish, W. R., & Rindskopf, D. M. (2007). Methods for evidence asedpractice: Quantitative synthesis of single-subject designs. New Directions for Evaluation, 113, 95–109.
Singh, S. (2006). Impact of color on marketing. Management Decision, 44, 783–789.
Singh, K. P., Ojha, P., Malik, A., & Jain, G. (2009). Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemometrics and Intelligent Laboratory Systems, 99, 150–160.
Smith, H. S. (2008). Emotional evaluation of a product/system (PhD dissertation, University of Central Florida, Orlando, FL).
Smith, S., & Fu, S. H. (2011). The relationships between automobile head-up display presentation images and drivers’ Kansei. Displays, 32, 58–68.
Steenkamp, J. B. E. M., & Van Trijp, H. C. M. (1996). Quality guidance: A consumer-based approach to food quality improvement using partial least squares. European Review of Agricultural Economics, 23, 195–215.
Swierenga, H., de Weijer, A. P., van Wijk, R. J., Buydens, L. M. C. (1999). Strategy for constructing robust multivariate calibration models. Chemometrics and Intelligent Laboratory Systems, 49, 1–17
Tangchaidee, K., Bouchard, C., Aoussat, A., & Butdee, S. (2010). A brand identity adjustable to redesign by using similarity matching for lady fashion shoes. Paper presented at the International Conference on Kansei Engineering and Emotion Research, Paris.
Tanoue, C., Ishizaka, K., & Nagamachi, M. (1997). Kansei Engineering: A study on perception of vehicle interior Image. International Journal of Industrial Ergonomics, 19, 115–128.
Tenenhaus, M., Pagès, J., Ambroisine, L., & Guinot, C. (2005). PLS methodology to study relationships between hedonic judgements and product characteristics. Food Quality and Preference, 16, 315–325.
Terrin, M. L. (1997). MPH individual subject random assignment as the preferred means of evaluating behavioral lifestyle. Controlled Clinical Trials, 18, 500–505.
Tsai, J. L., Knutson, B., & Fung, H. H. (2006). Cultural variation in affect valuation. Journal of Personality and Social Psychology, 90, 288–307.
Wei, S. T., Ou, L. C., Luo, M. R., & Hutchings, J. B. (2012). Optimisation of food expectations using product colour and appearance Food Quality and Preference, 23, 49–62.
Yang, H. H., & Lin, C. L. (2009). On genetic algorithms for shoe making nesting – A Taiwan case. Expert Systems with Applications, 36, 1134–1141.
Yusoff, N., Ramasamy, M., & Yusup, S. (2011). Taguchi’s parametric design approach for the selection of optimization variables in a refrigerated gas plant. Chemical Engineering Research and Design, 89, 665–675
校內:2019-05-21公開