簡易檢索 / 詳目顯示

研究生: 陳彥興
Chen, Yen-Hsing
論文名稱: 陽極氧化鋁模板輔助電化學沉積氧化鋅及銅/氧化亞銅奈米陣列之成長與光電化學性質
Fabrication and Photoelectrochemical Properties of ZnO and Cu/Cu2O Nanostructures with an Anodic Aluminum Oxide Template via Electrochemical Deposition
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 陽極氧化鋁電化學沉積氧化鋅奈米結構銅/氧化亞銅奈米結構水分解
外文關鍵詞: ZnO, Cu/Cu2O, nanostructure, AAO, water splitting
相關次數: 點閱:125下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電化學沉積的方式結合陽極氧化鋁模板輔助,製備一維氧化鋅及銅/氧化亞銅奈米結構,研究其微結構、成長機制及光電化學性質。

    第一部分,於草酸系統中,施與定電位80 V兩次陽極處理製備陽極氧化鋁模板,於7小時的二次陽極處理時間,得到孔徑120~150 nm,
    膜厚150 μm,深寬比高達1000之陽極氧化鋁模板模板。並發現電子束蒸鍍於模板上的白金背電極,呈現火山口的形貌,為後續生成氧化鋅奈米管原因之一。

    第二部分,以陽極氧化鋁模板輔助,以電化學方式沉積氧化鋅奈米陣列於模板孔洞中。鋅離子由硫酸鋅提供,雙氧水為輔助電解質。控制不同的硫酸鋅電解質濃度(0.1 M, 0.5M),可分別得到氧化鋅奈米管與奈米線陣列。氧化鋅奈米管的生成因素為火山口形貌之白金背電極、鋅離子空乏區影響沿模壁較慢的異質成核成長速率與電解水產生的氫氣氣泡的阻礙。氧化鋅奈米線生成因素為較高的氧化鋅成核成長速率填滿模板孔洞。

    第三部分,以陽極氧化鋁模板,電化學沉積銅/氧化亞銅複合奈米陣列於模板孔洞中。電解液中的銅離子由硫酸銅所提供,乳酸為輔助電解質,將電解液調配至pH = 10的鹼性環境下,於常溫下進行沉積。控制不同的沉積電流密度,可得到不同比例之銅/氧化亞銅複合奈米線,較高的沉積電流密度,奈米線中的銅含量增加,反之,較低的沉積電流密度,氧化亞銅的含量增加。

    第四部分,量測氧化鋅及銅/氧化亞銅奈米線之光電化學性質,發現其均有能力分解水,但效率不佳,推測主要原因為多晶結構增加了電子電洞的再結合率。

    One-dimensional ZnO nanowires (NWs), nanotubes (NTs) and Cu/Cu2O NWs electrodeposited via high aspect ratio anodic alumina oxide (AAO) template assistance. An AAO template was fabricated by two-step anodization process. The morphologies of the ZnO nanostructures synthesized under H2O2 with various electrolyte concentrations of ZnSO4 were NTs and NWs. Cu/Cu2O nanostructures were synthesized under CuSO4 and lactic acid electrolyte. The Cu in Cu/Cu2O compound nanowire will change with different deposition current density. They all have ability for water splitting.

    摘要 I Abstract III 致謝 VIII 總目錄 X 表目錄 XIII 圖目錄 XIV 第一章、緒論 1 1.1 前言 1 1.2 研究動機 2 第二章、文獻回顧與理論說明 3 2.1 電化學理論基礎[11] 3 2.2 氧化鋅 (ZnO) 7 2.3 氧化亞銅 (Cu2O) 10 2.4 陽極氧化鋁(Anodic alumina oxide, AAO) 13 2.4.1 陽極氧化鋁模板輔助合成奈米材料 18 2.4.2 電化學沉積氧化鋅奈米結構 25 2.4.3 電化學沉積氧化亞銅奈米結構 27 2.5 水分解(Water splitting) 29 第三章、實驗步驟與方法 37 3.1 實驗流程 37 3.1.1 陽極氧化鋁模板(AAO)之製備 40 3.1.2 工作電極之製備 43 3.1.3 電化學沉積氧化鋅奈米線與奈米管 45 3.1.4 電化學沉積銅/氧化亞銅複合奈米線 45 3.2 實驗藥品及設備 50 3.2.1 實驗設備 50 3.2.2 實驗藥品 51 3.3 微結構、成份及形貌分析 52 3.3.1 X光繞射儀 (X-ray diffractometer, XRD) 52 3.3.2 場發射掃描式電子顯微鏡 (Field Emission Scanning electron microscopy, FE-SEM) 53 3.3.3 高解析穿透式電子顯微鏡 (High resolution transmission electron microscopy, HRTEM) 53 3.4 光電化學分析 54 第四章、結果與討論 55 4.1 陽極氧化鋁模板與背電極 55 4.1.1 80 V處理之陽極氧化鋁模板 55 4.1.2 白金背電極 56 4.2 陽極氧化鋁模板輔助電化學成長氧化鋅奈米管及奈米線陣列 59 4.2.1 氧化鋅奈米陣列結晶結構分析 60 4.2.2 氧化鋅奈米陣列之形貌 63 4.2.3 單根氧化鋅奈米結構分析 65 4.2.4 氧化鋅奈米管與奈米線之成長機制 69 4.3 陽極氧化鋁模板輔助電化學成長銅/氧化亞銅複合奈米線 72 4.3.1 銅/氧化亞銅複合奈米陣列結晶結構分析 72 4.3.2 銅/氧化亞銅複合奈米陣列之形貌 74 4.3.3 單根銅/氧化亞銅複合奈米線分析 77 4.3.4 銅/氧化亞銅複合奈米線之成長機制 81 4.4 氧化鋅奈米線及銅/氧化亞銅奈米線光電化學分析 85 第五章、結論 90 參考文獻 92

    1. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”, Science, 295, 2425 (2002).
    2. H. Kind, H. Yan, M. Law, B. Messer, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches”, Adv. Mater., 14, 158 (2002).
    3. E.W. Wong, P.E. Sheehan, and C.M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”, Science, 277, 1971 (1997).
    4. P. Poncharal, Z.L. Wang, D. Ugarte, and W.A. de Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes”, Science, 283, 1513 (1999).
    5. J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, “Softening of nanocrystalline metals at very small grain sizes”, Nature, 391, 561 (1998).
    6. Z.L. Wang, and J.H. Song,” Piezoelectric nanogenerators based on zinc oxide nanowire arrays”, Science, 312, 242-246 (2006) .
    7. F. Qian, Y. Li, S. Gradeak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M.Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers”,Nat. Mater., 7, 701 (2008).
    8. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., 84, 3654 (2004).
    9. D.A. Neamen, Semiconductor Physics & Devices 2nd ed., McGraw-Hill, New York, 1992.
    10. R.S. Wagner and W.C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett., 4, 89 (1964)
    11. A. J. Bard, L. R. Faulk, Electrochemical method, Wiley, New York, 21, 1980.
    12. S. Das, and S. Ghosh, “Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis” Dalton Trans., 42, 1645-1656 (2013).
    13. Z.Y. Fan, and J.G. Lu, “Zinc oxide nanostructures: Synthesis and properties “, J. Nanosci. Nanotechno., 5, 1561-1573 (2005).
    14. P. Nunes, E. Fortunato, P. Tonello, F.B. Fernandes, P. Vilarinho, and R. Martins,” Effect of different dopant elements on the properties of ZnO thin films”, Vacuum, 64, 281-285 (2002).
    15. M. Chen, Z.L. Pei, X. Wang, C. Sun, and L. S. Wen, “Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A, 19, 963 (2001).
    16. E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, “Transparent Conducting Oxides for Photovoltaics”, MRS Bull., 32, 242-247 (2007).
    17. S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, and A. Shah, “Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes”, Sol. Energy Mater. Sol. Cells, 86, 385-397 (2005).
    18. G.J. Exarhos, and X.D. Zhou, “Discovery-based design of transparent conducting oxide films”, Thin Solid Films, 515, 7025-7052 (2007).
    19. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchilcov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morboc, “A comprehensive review of ZnO materials and devices” J. Appl. Phys., 98, 041301 (2005).
    20. Y. Chen, D.M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, J. Appl. Phys. 84, 3912 (1998).
    21. Z.K. Tang, G.K.L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys.Lett., 72, 3270 (1998).
    22. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, and H.J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Appl. Phys. Lett., 81, 3648 (2002).
    23. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays”, Appl. Phys. Lett., 83, 144 (2003).
    24. Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., 84, 3654-3656 (2004).
    25. J. Xu, Q. Pan, Y. Shun, and Z. Tian, “Grain size control and gas sensing properties of ZnO gas sensor”, Sens. Actuator B-Chem., 66, 277-279 (2000).
    26. P. Mitra, A.P. Chatterjee, H.S. Maiti, “ZnO thin film sensor”, Mater. Lett., 35, 33-38 (1998).
    27. W.Y. Ching and Y.N. Xu, “Ground-state and optical properties of Cu&O and CuO crystals”, Phys. Rev. B, 40, 7684-7695 (1989).
    28. A. Mittiga, E. Salza, F. Sarto, M. Tucci and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate”, Appl. Phys. Lett., 88, 163502 (2006).
    29. G. K. Paul, Y. Kawa, H. Sato, T. Sakurai, and K. Akimoto, “Defects in Cu2O studied by deep level transient spectroscopy”, Appl. Phys. Lett., 88, 141901 (2006).
    30. M. A. Green, and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K”, Prog. Photovolt., 3, 189 (1995).
    31. B.Balamurugan, and B.R.Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation” ,Thin Solid Films, 396, 90-96 (2001).
    32. E. Fortin, and D. Masson, “Photovoltaic effects in Cu2O-Cu solar cells grown by anodic oxidation”, Solid-State Electron., 25, 281 (1982).
    33. W.M. Sears, and E. Fortin, “Preparation and properties of Cu2O/Cu photovoltaic cells”, Solar Energy Mater., 10, 93 (1984).
    34. J. Herion, E.A. Niekish, and G. Schari, “Investigation of metal oxide/cuprous oxide heterojunction solar cells”, Solar Energy Mater., 4, 101 (1980).
    35. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells” , Sol. Energy, 80, 715-722 (2006).
    36. J. J. Lofeski, “Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion”, J. Appl. Phys., 27, 777 (1956).
    37. H. Cölfen, and S. Mann, “Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures.” ,Angew Chem. Int. Ed., 42, 2350 (2003).
    38. E. Gomar-Nadal, J. Puigmarti-Luis, D.B. Amabilino, “Assembly of functional molecular nanostructures on surfaces.”, Chem. Soc. Rev., 37, 490-504 (2008).
    39. J.J. Gooding, F. Mearns, W. Yang, J. Liu, “Self-assembled monolayers into the 21st century: recent advances and applications.”, Electroanalysis, 15, 81-96 (2003).
    40. C.R. Martin, and P.Kohli, “The emerging field of nanotube biotechnology.” Nat. Rev. Drug Discov., 2, 29–37 (2003).
    41. G. Schmid, “Materials in nanoporous alumina.”, J. Mater. Chem., 12, 1231 (2002).
    42. A. Ghicov, and P. Schmuki, “Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and otherself-aligned MO structures.”, Chem. Commun., 20, 2791 (2009).
    43. C.A.Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes.”, J .Mater. Chem.,17, 1451, (2007).
    44. E.J. Anglin, L. Cheng, W.R. Freeman, and M.J. Sailor, “Porous silicon in drug delivery devices and materials.”, Adv. Drug Deliv. Rev., 60, 1266, (2008).
    45. R.B. Wehrspohn, “Ordered porous nanostructures and applications.”, Spriner, German, 2005
    46. Y. Ren, Z. Ma, and P.G. Bruce, “Ordered mesoporous metal oxides: synthesis and applications.”, Chem. Soc. Rev., 14, 4909 (2012).
    47. M. A. Barrett and A. B. Winterbottom, “1stinternational congress on metal corrosion, 1961” Butterworth & Co., London, 1962.
    48. L.Woo, and K. Jae-Cheon, “Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization.”, Nanotechnology, 21,485304, (2010)
    49. L. Yi, L Zhiyuan, C. Shuoshuo, H. Xing, and He Xinhua, “Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization.”, Chem. Commun., 46, 309 (2009).
    50. Z. Fan, X. Liu, C. Pan, and J. Zhu, “Nano-porous anodic aluminium oxide membranes with 6–19 nm pore diameters formed by a low-potential anodizing process. “, Nanotechnology, 18, 345302 (2007).
    51. K. Lee, Y. Tang, and M. Ouyang, “Self-ordered, controlled structure nanoporous membranes using constant current anodization.”, Nano. Lett., 8, 4624 (2008).
    52. W. Lee, J. Kim, and U.Gösele, “Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions.”, Adv. Funct. Mater, 20, 21 (2010).
    53. A.L. Friedman, D. Brittain, and L. Menon, “Roles of pH and acid type in the anodic growth of porous alumina.”, J. Chem. Phys., 127, 154717 (2007).
    54. S.Z. Chu, K. Wada, S. Inoue, M. Isogia, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization.”, J. Electrochem. Soc., 153, B384 (2006).
    55. S. Ono, M. Saito, and H. Asoh, “Self-ordering of anodic porous alumina formed in organic acid electrolytes.” Electrochim. Acta, 51, 827 (2005).
    56. G.D. Sulka, and W.J. Stepniowski, “Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures.”, Electrochim. Acta, 54, 3683, (2009).
    57. A.P. Li, F. Muller, and U. Gosele, “Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina.”, Electrochem. Solid-State Lett., 3, 131 (2000).
    58. H. Masuda, and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina.”, Science , 268, 1466 (1995).
    59. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T.Tamamura, “Square and triangular nanohole array architectures in anodic alumina.” Adv. Mater, 13, 189 (2001).
    60. A. M. Md Jani, D. Losic c, and N.H. Voelcker, “Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications.”, Prog. Mater. Sci., 58, 636-704 (2013).
    61. A.P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina.”, J. Appl. Phys., 84, 6023 (1998).
    62. K. Nielsch, J.Choi, K. Schwirn, and R.B. Wehrspohn, “Self-ordering regimes of porous alumina: the 10 porosity rule.”, Nano. Lett., 2, 677 (2002).
    63. R.C. Furneaux, W.R. Rigby, and A.P. Davidson, “The formation of controlled-porosity membranes from anodically oxidized aluminium.”, Nature, 337, 147 (1989).
    64. G.K. Singh, A.A. Golovin, and I.S. Aranson, “Formation of self-organized nanoscale porous structures in anodic aluminum oxide.”, Phys. Rev. B, 73, 205422 (2006).
    65. O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore structures in anodic alumina.”, J. Electrochem. Soc., 145, 3735 (1998).
    66. D. Losic, and S.Simovic, “Self-ordered nanopore and nanotube platforms for drug delivery applications.”, Expert Opin. Drug Deliv., 6, 1363 (2009).
    67. V.P. Parkhutik, and V.I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium.” J. Phys. D: Appl. Phys., 25, 1258 (1992).
    68. S. Hou, C.C. Harrell, L. Trofin, P. Kohli, and C.R. Martin, “Layer-by-layer nanotube template synthesis.”, J. Am. Chem. Soc., 126, 5674 (2004).
    69. B.T.T. Nguyen, E.Z.C. Ting, and C-S. Toh, “Development of a biomimetic nanoporous membrane for the selective transport of charged proteins.” Bioinspir. Biomim., 3, 035008 (2008).
    70. P.S. Cheow, E.Z.C. Ting, M.Q. Tan, and C.S. Toh, “Transport and separation of proteins across platinum-coated nanoporous alumina membranes.”, Electrochim. Acta., 53, 4669 (2008).
    71. Q. Teng, W. Zhang, X. Lang, Y. Zhou, T. Cui, and P.K. Chu, “Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes.” Small., 5, 2333 (2009).
    72. L. Zhang, Y. Fang, and P.Zhang, “Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering.” Spectrochim. Acta. Part A: Mo.l Biomol. Spectrosc., 69, 91 (2008).
    73. A. Pereira, F. Laplante, M. Chaker, and D. Guay, “Functionally modified macroporous membrane prepared by using pulsed laser deposition.” Adv. Funct. Mater., 17, 443 (2007).
    74. Y. Lei, W. Cai, and G. Wilde, “Highly ordered nanostructures with tunable size, shape and properties: a new way to surface nano-patterning using ultra-thin alumina masks.” Prog. Mater .Sci., 52, 465 (2007).
    75. J. Bachmann, J. Jing, M. Knez, S. Barth, H. Shen, S. Mathur, U. Gösele, and K. Nielsch, “Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition.”, J. Am. Chem. Soc., 129, 9554 (2007).
    76. A.B.F. Martinson, J.W. Elam, J.T. Hupp, and M.J.Pellin, “ZnO nanotube based dye-sensitized solar cells.” Nano. Lett., 7, 2183 (2007).
    77. L.D. Miranda, R.T. Short, F.H.W. van Amerom, R.J. Bell, and R.H. Byrne, “Direct coupling of a carbon nanotube membrane to a mass spectrometer: contrasting nanotube and capillary tube introduction systems.” J. Membr. Sci., 344, 26 (2009).
    78. A. Popp, J. Engstler, and J.J.Schneider, “Porous carbon nanotube-reinforced metals and ceramics via a double templating approach.” Carbon, 47, 3208 (2009).
    79. S. Park, Y.S. Kim, W.B. Kim, S. Jon, “Carbon nanosyringe array as a platform for intracellular delivery.”, Nano. Lett., 9, 1325 (2009).
    80. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Ruoff, “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method.”, Chem. Mater., 10, 260 (1998).
    81. X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review.”, Anal. Chim. Acta., 620, 8 (2008).
    82. A. Yamaguchi, F Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, “Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane.”, Nat. Mater., 3, 337 (2004).
    83. B. Ma, G.K.L. Goh, T.S. Zhang, and J. Ma, “Hierarchically structured anatase nanotubes and membranes.”, Micropor. Mesopor. Mater., 124, 162 (2009).
    84. P.M. Rørvik, K. Tadanaga, M. Tatsumisago, T. Grande, M.A. Einarsrud, “Template-assisted synthesis of PbTiO3 nanotubes.”, J. Eur. Ceram. Soc., 29, 2575 (2009).
    85. X. Li , F. Cheng , B. Guo , and J. Chen, “Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries.” J .Phys. Chem. B, 109, 14017 (2005).
    86. Y. Wang, M. Wu, Z. Jiao, and J.Y. Lee, “One-dimensional SnO2 nanostructures: facile morphology tuning and lithium storage properties.”, Nanotechnology, 20, 345704 (2009).
    87. M.H. Park, M.G. Kim, J. Joo, K. Kim,J. Kim,S. Ahn, Y. Cui, and J. Cho “Silicon nanotube battery anodes.” Nano. Lett., 9, 3844 (2009).
    88. C. Shi, G. Wang, N. Zhao, X. Du, and J. Li, “NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties.” Chem. Phys. Lett., 454, 75 (2008).
    89. C.R. Martin, “Nanomaterials: a membrane-based synthetic approach.” Science, 266, 1961 (1994).
    90. W. Wang, N. Li, X. Li, W. Geng, and S. Qiu, “Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition.”, Mater.Res. Bull., 41, 1417 (2006).
    91. Y. Qin, L. Liu, R. Yang,U. Gösele, and M. Knez, “General assembly method for linear metal nanoparticle chains embedded in nanotubes.”, Nano. Lett., 8, 3221 (2008).
    92. W. Lee, R. Scholz, K. Nielsch, and U. Gösele, “A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes.”, Angew. Chem. Int. Ed., 44, 6050 (2005).
    93. J. Burdick, E. Alonas, H.C. Huang, K. Rege, and J. Wang, “High-throughput templated multisegment synthesis of gold nanowires and nanorods.”, Nanotechnology, 20, 065306 (2009).
    94. M.J. Zheng , L.D. Zhang, G.H. Li, and W.Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chem. Phys. Lett., 363, 123 (2002).
    95. Q. Wang, G. Wang, B. Xu, J. Jie, X. Han, G. Li, Q. Li, and J.G. Hou, “Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane” , Mater. Lett., 59, 1378 (2005).
    96. M. Lai, and D.J. Riley, “Templated Electrosynthesis of Zinc Oxide Nanorods”, Chem. Mater., 18, 2233 (2006).
    97. Y.H. Lee, I.C. Leu, M.T. Wu, J.H. Yen, K.Z. Fung, “Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition”, J. Alloy. Compd., 427, 213 (2007).
    98. R. Inguanta, C. Sunseri, and S. Piazza, “Photoelectrochemical Characterization of Cu2O-NanowireArrays Electrodeposited into Anodic Alumina Membranes”, Electrochem. Solid-State Lett., 10, K63 (2007).
    99. H. Ju , J.K.Lee , J. Lee, and J. Lee, “Fast and selective Cu2O nanorod growth into anodic alumina templates via electrodeposition”, Curr. Appl. Phys., 12, 60 (2012).
    100. A. Fujishima and K. Honda, " Photolysis-decomposition of water at the surface of an irradiated semiconductor", Nature, 238, 37 (1972).
    101. X. Chen, S. Shen, L. Guo and S. Mao, " Semiconductor-based Photocatalytic Hydrogen Generation ", Chem. Rev., 110, 6503 (2010).
    102. J. Ji, W. Zhang, H. Zhang, Y. Qiu, Y. Wang, Y. Luo, and L. Hu, "High density Si/ZnO core/shell nanowire arrays for photoelectrochemical water splitting", J Mater Sci: Mater Electron, 24, 3474 (2013).
    103. X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, and Y. Li, " Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting", Nano Lett., 9, 2331 (2009).
    104. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondo and K. Domen, "Cu2O as a photocatalyst for overall water splitting under visible light irradiation", Chem. Commun., 3, 357 (1998).
    105. Y.K. Hsu, C.H. Yu, Y.C. Chen, and Y.G. Lin, " Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting", Electrochim. Acta, 105, 62 (2013).
    106. Z. Zhang and P. Wang, "Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy", J. Mater. Chem., 22, 2456 (2012).
    107. F.E. Osterloh, “Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting”, Chem. Soc. Rev.,42, 2294 (2013).
    108. Th. Pauport’e and D. Lincot,” Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—mechanistic aspects” ,J. Electrochem. Soc., 148, C310 (2001).
    109. J. Elias, R. Tena-Zaera and C. Le´vy-Cle´ment, “Effect of the Chemical Nature of the Anions on the Electrodeposition of ZnO Nanowire Arrays”, J. Phys. Chem. C, 112, 5736 (2008)
    110. C.L. Cheng, J.S. Lin, Y.F. Chen, “Fabrication and growth mechanism of metal (Zn, Sn) nanotube arrays and metal (Cu, Ag) nanotube/nanowire junction arrays”, Mater. Lett., 62, 1666 (2008)
    111. J.A. Switzer, C.J. Hung, L.Y. Huang, F. Scott Miller, Y. Zhou, E.R. Raub, M.G. Shumsky, E.W. Bohannan, “Potential oscillations during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures”, J. Mater. Res., 13, 909 (1998).
    112. X.M. Liu, Y.C. Zhou, Appl. Phys.,”Electrochemical deposition and characterization of Cu2O nanowires”, A, 81, 685 (2005).
    113. S. Kenane, L. Piraux,” Electrochemical self-assembly of Cu/Cu2O nanowires”, J. Mater. Res., 17, 401 (2002).
    114. A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev., 38, 253 (2009)
    115. Factstage software, http://www.factsage.com

    下載圖示 校內:2017-07-30公開
    校外:2017-07-30公開
    QR CODE