| 研究生: |
謝臻德 Shieh, Jen-Der |
|---|---|
| 論文名稱: |
多項式變曲率TMD於高樓結構之多軸向振動台即時複合實驗 Real-Time Hybrid Testing of Highrise Buildings with a PSIVC-TMD by Multi-Axial Simulation Table |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 多項式變曲率滑動支承 、調諧質量阻尼器 、記憶體共享光纖網路 、多軸向振動台 、即時複合實驗 |
| 外文關鍵詞: | tuned mass damper, high-rise buildings, real-time hybrid testing, multi-axial simulation table, hardware-in-the-loop, polynomial sliding isolator with variable curvature |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之研究目的為探討PSIVC機構之摩擦行為、完成PSIVC-TMD於MAST振動台之數位式雙向即時複合實驗與相關之前期模擬測試、比較MAST即時複合實驗於加速度控制及位移控制下之差異、探討PSIVC-TMD之行為及減振效能。
PSIVC之啟動機制為慣性力突破最大靜摩擦力時,而PSIVC從滑動狀態返回黏滯狀態之機制為檯面與PSIVC之動能相等時,因此PSIVC之單次滑動距離與啟動初始速度、動摩擦係數、震波類型有關。本文建議如要識別PSIVC之摩擦係數應依當下之物理現象選取有意義之資料點進行迴歸分析,並且由於PSIVC之摩擦行為屬非線性因此無法僅以一組庫倫或康氏摩擦係數表示,在進行PSIVC反應擬合時應對照當下PSIVC之行為代入不同摩擦係數。經本文探討得知PSIVC於雙向震波下之摩擦行為相當複雜,無法以雙向獨立之假設進行計算,也因此更應進行即時複合實驗測試,以得到較貼近PSIVC真實行為之結果。
本文之主結構設計為依據Sadek等人[4]之十層樓剪力屋架參數進行調整而得,並且本文之x向主結構設計參數與PSIVC曲盤 內割線頻率滿足最佳TMD設計參數,而y向主結構之勁度為x向之1.2倍。本文實驗中作用於主結構各樓層之風力載重歷時為選用一組寬頻隨機外力,並依建築物耐風設計規範中隨建築物高度所得風速大小之比例進行載重分配。經數值模擬可得PSIVC-TMD於x向控制效果優於y向之結果。
於DHILs測試中放入3階0.1Hz之Butterworth數位高通濾波器以模擬MAST振動台加速度控制之行為,發現因該濾波器造成之訊號相位提前(phase-lead)而使得本文之結構系統為不穩定。經DHILs之測試下,於主結構simulink模型中加入時間延遲模塊,直接對主結構第一模態頻率進行相位補償,便可解決MAST濾波器造成之主結構反應發散現象,然而結構反應經濾波器、補償器之影響下將與數值模擬之結果存在一定誤差。
於PRTHT、RTHT實驗結果與DHILs進行比較,可得到在本文之實驗架構下以MAST位移控制之效果優於加速度控制,其原因為MAST位移控制不受濾波器影響故也無須進行相位補償。
Recently, the technology of using a tuned mass damper (TMD) to reduce structural dynamic response has become more and more mature, and it has been widely used in engineering. From many theoretical and practical cases, it can be found that the installation of TMD in high-rise buildings can effectively reduce the impact of wind on buildings. To investigate the interaction effect between TMD and buildings, real-time hybrid testing (RTHT) is useful. The advantage of RTHT is that it can reduce the time and labor cost of the experiment. The basic concept of RTHT is to divide the whole building, including TMD, into two parts. In one part, the TMD represents the substructure, and the other part is a numerical model of the building, which represents the primary structure. During the RTHT test, the behavior of the primary structure will be represented by a multi-axial simulation table (MAST). In order to investigate the feasibility and experimental safety of RTHT with a TMD, this paper demonstrates the use of Digital-Hardware-in-the-Loop simulation (DHILs) to simulate the wind response of a high-rise building with a PSIVC-TMD. This paper also presents the experimental results of RTHT, and proposes that the DHILs should be used as a pre-test for RTHT in the future.
[1]Lu, L.-Y., Lee, T.-Y., & Yeh, S.-W., “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engineering & Structural Dynamics, 40(14), 1609-1627., (2011)
[2]Lu, L.-Y., Lee, T.-Y., Juang, S.-Y., & Yeh, S.-W., “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study.” Engineering Structures, 56, 970-982., (2013)
[3]J. Ormondroyd and J. P. Den Hartog, “The theory of dynamic vibration absorber”, Trans. ASME APM-50-7, 1928, pp. 9-22., (1928)
[4]Sadek, F., Mohraz, B., Taylor, A. W., Chung, R. M., “A method of estimating the parameters of tuned mass damper for seismic application.” Earthquake Engrg. and Struct. Dynamics, 26, 617-635, (1997)
[5]Muhammad N.S. Hadi, Yoyong Arfiadi, “Optimum Design of Absorber for MDOF Structures.” Journal of Structural Engineering, November 1998, (1998)
[6]Wang, J. F., Lin, G. L., Lin, C. C., Jian, J.Y., “Optimum placement and design of multiple tuned mass dampers for vibration control of asymmetric buildings.” Journal of Vibration and Control, (2021)
[7]Ledin, J. A., “Hardware-in-the-loop simulation.” Embedded Systems Programming, 12, 42-62., (1999)
[8]Chu, S. Y., Soong, T. T., Reinhorn, A. M., Helgeson, R. J., & Riley, M. A., “Integration issues in implementation of structural control systems.” Journal of Structural Control, 9(1)., (2002)
[9]Abdalla, O., Hammad, S. A., & Yousef, H. A., “A Framework for Real Time Hardware in the loop Simulation for Control Design.” (2014)
[10]Hakuno, M., Shidawara, M., & Hara, T., “DYNAMIC DESTRUCTIVE TEST OF A CANTILEVER BEAM, CONTROLLED BY AN ANALOG-COMPUTER.” Proceedings of the Japan Society of Civil Engineers, 1969(171), 1-9., (1969)
[11]Takanashi, K., Udagawa, K., Seki, M., Okada, T., & Tanaka, H., “NON-LINEAR EARTHQUAKE RESPONSE ANALYSIS OF STRUCTURES BY A COMPUTER-ACTUATOR ON-LINE SYSTEM : Part 1 Detail of the System.” Transactions of the Architectural Institute of Japan, 229, 77-83,190., (1975)
[12]Udagawa, K., Takanashi, K., & Tanaka, H., “NON-LINEAR EARTHQUAKE RESPONSE ANALYSIS OF STRUCTURES BY A COMPUTER-ACTUATOR ON-LINE SYSTEM : Part II : Response Analyses of One Bay-One Story Steel Frames with Inelastic Beams.” Transactions of the Architectural Institute of Japan, 268, 49-59., (1978)
[13]Takanashi, K., Udagawa, K., & Tanaka, H., “NON-LINEAR EARTHQUAKE RESPONSE ANALYSIS OF STRUCTURES BY A COMPUTER-ACTUATOR ON-LINE SYSTEM Part III : Reponse Analyses of 1-Bay 2-Story Steel Frames.” Transactions of the Architectural Institute of Japan, 288, 115-124., (1980)
[14]Dermitzakis, S. N., & Mahin, S. A., “Development of substructuring techniques for on-line computer controlled seismic performance testing” (UCB/EERC-85/04)., (1985)
[15]Nakashima, M., Kato, H., & Takaoka, E., “Development of real-time pseudo dynamic testing.” Earthquake Engineering & Structural Dynamics, 21(1), 79-92., (1992)
[16]Chung, W.-J., Yun, C.-B., Kim, N.-S., & Seo, J.-W., “Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures.” Engineering Structures, 21(4), 365-379., (1999)
[17]Horiuchi, T., Inoue, M., Konno, T., & Yamagishi, W., “Development of a Real-Time Hybrid Experimental System Using a Shaking Table.” (Proposal of Experiment Concept and Feasibility Study with Rigid Secondary System). JSME International Journal Series C, 42(2), 255-264., (1999)
[18]Reinhorn, A., Sivaselvan, M., Weinreber, S., & Shao, X., “Real-time dynamic hybrid testing of structural systems.” World Conference on Earthquake Engineering., (2004)
[19]Chu, S., Lo, S., & Li, M., “APPLICATION OF SCRAMNET SYSTEM IN REAL-TIME PSEUDODYNAMIC TEST AND SIMULATION.” International Conference on Earthquake Engineering, (2006)
[20]Carrion, J. E., & Spencer Jr, B. F., “Model-based strategies for real-time hybrid testing.” (1940-9826)., (2007)
[21]Yang, T., Mosqueda, G., & Stojadinovj , B., “Evaluating the quality of hybrid simulation test using an energy-based approach.” World Conference on Earthquake Engineering., (2008)
[22]WANG, T., & CHENG, C., “A Model-based Predictor-Corrector Algorithm for Substructure Hybrid Test System Proceedings of the Ninth Pacific.” Conference on Earthquake Engineering., (2011)
[23]Wang, J.-T., Gui, Y., Zhu, F., Jin, F., & Zhou, M.-X., “Real-time hybrid simulation of multi-story structures installed with tuned liquid damper.” Structural Control and Health Monitoring, 23(7), 1015-1031., (2016)
[24]Zhang, R., Lauenstein, P. V., & Phillips, B. M., “Real-time hybrid simulation of a shear building with a uni-axial shake table.” Engineering Structures, 119, 217-229., (2016)
[25]Chu, S.-Y., Lu, L.-Y., & Yeh, S.-W., “Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table.” Structural Control and Health Monitoring, 25(3)., (2018)
[26]Tian, Y., Shao, X., Zhou, H., & Wang, T., “Advances in Real-Time Hybrid Testing Technology for Shaking Table Substructure Testing.” Frontiers in Built Environment, 6., (2020)
[27]Xiuyu Gao “Development of a Robust Framework for Real-Time Hybrid Simulation: From Dynamic System, Motion Control to Experimental Error Verification.” A Dissertation Submitted to the Faculty of Purdue University., (2012)
[28]Michalakis Constantinou, Anoop Mokha, Andrei Reinhorn., “Teflon Bearings in Base Isolation II: Modeling.” J. Struct. Eng., 1990, 116(2): 455-474., (1990)
[29]朱凱業(2013)。多項式變曲率滑動支承之混合實驗。國立成功大學土木工程研究所碩士論文。
[30]馬士勛(2020)。配置PSIVC系統之即時類比式硬體模擬與複合試驗。國立成功大學土木工程研究所碩士論文。
[31]陳軒立(2020)。摩擦型滑動支承之摩擦係數識別研究。國立成功大學土木工程研究所碩士論文。
[32]黃智遠(2019)。配置LSCMD多自由度系統之類比式硬體模擬試驗。國立成功大學土木工程研究所碩士論文。
[33]鄧孟澤(2019)。應用數位式硬體模擬試驗進行即時振動台複合實驗誤差之階段性探討。國立成功大學土木工程研究所碩士論文。
[34]林亮宇(2020)。應用即時硬體模擬進行複合試驗之雛型規劃與檢討。國立成功大學土木工程研究所碩士論文。
[35]賴畇希(2021)。多項式變曲率滑動支承之類比式硬體模擬與應用多軸向振動台進行即時複合實驗研究。國立成功大學土木工程研究所碩士論文。
[36]顏呈璁(2009)。多重取樣量測對擬動態試驗誤差之影響。國立成功大學土木工程研究所碩士論文。
[37]吳依寰(2011)。摩擦型阻尼器系統之擬動態試驗與振動台驗證。國立成功大學土木工程研究所碩士論文。
[38]許敬昀(2014)。摩擦型調諧質量阻尼器系統之混合實驗驗證。國立成功大學土木工程研究所碩士論文。
[39]賈博宇(2016)。振動台效能對PFCMD即時複合實驗之影響探討。國立成功大學土木工程研究所碩士論文。
[40]林煒松(2019)。採用不同振動台進行即時複合實驗之效能探討。國立成功大學土木工程研究所碩士論文。
[41]徐浩翔(2021)。配置主動質量阻尼器之多項式變曲率隔震系統隔震位移控制效能驗證。國立成功大學土木工程研究所碩士論文。
[42]羅仕杰(2005)。記憶體共享光纖網路設備於即時擬動態試驗之初步研究。國立暨南國際大學土木工程研究所碩士論文。
[43]建築物耐風設計規範與解說。內政部 95.9.22 台內營字第 0950805664 號令訂定 內政部 103.6.12 台內營字第 1030805400 號令修正,自中華民國一百零四年一月一日生效。
[44]風工程理論與應用。中華民國風工程學會編著。
校內:2027-09-21公開