簡易檢索 / 詳目顯示

研究生: 姚立謙
Yao, Li-Chang
論文名稱: 大尺度渦流模擬法於圓柱紊態尾流場之分析
Analysis of Flow over a Cylinder by Large Eddy Simulation (LES)
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 大尺度渦流模擬法圓柱尾流進口條件實驗儀器比較次格點模型
外文關鍵詞: large eddy simulation, wake of a circular cylinder, inlet conditions, comparison of different anemometry, sub-grid model
相關次數: 點閱:59下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本計算研究以大尺度渦流模擬法(LES)計算不同雷諾數 Re =9959 與Re = 3856於尾流之平均速度和平方均根擾動速度,而雷諾數之定義使用入口速度 與圓柱之直徑D 來定義,其結果並與石昌隆(2015)之實驗值做比較。
    計算以506644格點數作為基礎樣本,先使用次格點模型dynamic Smagorinsky model;而進口條件為無側流與橫流向平均速度之實驗值,其方法保持其紊流特性,去除實驗值較易造成誤差因素,而因此比較之進口條件為使用固定進口速度(fixed profile)與完全實驗值之進口。其三者綜合觀察下,最符合實驗值者為無側、橫流平均速度之實驗值進口速度。網格設置方面,與全域加密之983098格點數、尾流區塊部分加密做比較,得到於尾流各截面平均速度與平方均根擾動速度三者結果差異不大,但可以從迴流長度部份發現,網格之差異將影響迴流長度大小。此外本研究也針對不同次格點模型做比較,另一組參照組使用dynamic kinetic energy sub-grid scale model,發現尾流截面並無明顯差異,其原因推估為流場基本特色單純;但是從頻譜上可以推估,若於不同流場,使用不同次格點模型將有明顯之影響。

    This study is aimed to evaluate the significance of inlet conditions on the prediction accuracy for large eddy simulation and compare results with the experimental measurement at Reynolds number 3856 and 9959, which are in the range of sub-critical regime of wake flow. The control factors of computation include (1) grid number of 506644,983098, and refined mesh in near wake subregion, (2) inlet conditions given by assumed and experimental measured velocity profiles, and (3) difference between the sub-grid models of dynamic Smagorinsky model (DSM) and dynamic kinetic energy model (DKEM).

    The effect of the grid size on LES prediction is examined with the power spectral density of velocity at specific points. A small enough grid size for LES would show a slope of -5/3 at the range of frequencies from 1000 to 10000 Hz in the power spectral density of velocity. According to the conditions of power spectral density, all the samples in the test of grid are found to fall within Taylor’s micro-scale. Thus, the resolutions of large-scale eddies are reliable. From the velocity distributions of simulation results, it is found that there is no obvious difference in the test of various grid sizes. However, distinct grid size would influence the recirculation bubble length slightly in the simulation test. Among inlet conditions, it is found that experimental measured velocity profiles with zero value of the transverse and span-wise mean velocities but keeping their fluctuating velocities are the closest to the experiment results at the five selected stream-wise sections, since there are only upper half measured inlet velocity profiles from the measurements. In the comparison of different sub-grid model, it is discovered that these two simulated results are very close each other. Since the regime of wake past a circular cylinder is not very complex, the influence of the different sub-grid models is not apparent in this simulation research.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XIII 表目錄 XV 圖目錄 XVI 符號說明 XXIII 第一章 緒論 1 1.1前言 1 1.2 文獻回顧 2 1.2.1 圓柱尾流結構 2 1.2.2 計算之數值方法 3 第二章 物理問題與計算模型 9 2.1 物理問題描述 9 2.2 LES紊流模型 9 2.3 次格點模型 11 2.3.1 Smagorinsky Model 11 2.3.2 Dynamic Smagorinsky-Lilly Model 12 2.3.3 Dynamic Kinetic Energy Subgrid scale Model 14 第三章 數值模擬方法 17 3.1 演算法與離散方法 17 3.2 計算域與邊界條件設定 18 3.3 入口條件設定 18 3.4 網格與獨立驗證 21 3.5 y plus 討論 24 第四章 結果與討論 26 4.1 紊流統計量 26 4.2 計算域大小與邊界影響討論 27 4.2.1 基本設定討論 27 4.2.2 紊流動能與次格點動能 28 4.2.3 計算域比較 29 4.3 不同進口條件之討論 30 4.3.1不同進口條件討論 30 4.3.2入口條件於高雷諾數討論 31 4.4 不同次格點模型比較 32 4.4.1 雷諾數3856條件下格點模型比較 32 4.4.2 雷諾數9959條件下次格點模型比較 33 4.5 計算與不同實驗儀器比較 34 4.5.1 雷諾數3856條件下之比較 34 4.5.2 雷諾數9959條件下之比較 35 4.5.3 實驗與計算總討論 35 4.6 綜合討論 36 4.6.1 頻譜與物理現象討論 36 4.6.2 迴流區討論 36 第五章 結論與建議 38 5.1 結論 38 5.2 未來工作與建議 39 第六章 參考資料 40 表目錄 表1-1各文獻之參數與流場性質之比較 ( Re = 、St = ) 42 表3-1雷諾數Re=3856之進口條件(位置單位: mm,速度單位: m/s) 43 表3-2雷諾數Re=9959之進口條件(位置單位: mm,速度單位: m/s) 44 表4-1各計算方法之參數與流場性質比較 ( Re = 、St = ) 45 圖目錄 圖 1-1 Von Kármán vortex shedding之動態穩定示意圖(參考Parnaudeau et al. (2008)) 46 圖1-2 主流向平均速度分佈(參考Parnaudeau et al. (2008)) 46 圖1-3 側流向平均速度分佈圖(參考Parnaudeau et al. (2008)) 47 圖1-4 主流向平方均根擾動速度分佈(參考Parnaudeau et al. (2008)) 47 圖1-5 側流向平方均根擾動速度分佈(參考Parnaudeau et al. (2008)) 48 圖1-6 雷諾應力分佈(參考Parnaudeau et al. (2008)) 48 圖1-7 尾流之渦流分布呈現三維現象示意圖(自Lysenko(2012)Fig .3(b)) 49 圖1-8 頻譜區段描述(參考Dong et al. (2006)) 49 圖2-1 實驗風洞示意圖 50 圖3-1 計算區域示意圖(a)三維側視圖(b)平面投影圖 51 圖3-2 (a) A網格系統 (b) B網格系統 52 圖3-3 Re = 3856 條件下A網格主流向之平均速度統計穩定(Vortex Shedding Period,VSP) 53 圖3-4 Re = 3856 條件下A網格側流向之平均速度統計穩定(Vortex Shedding Period,VSP) 53 圖3-5 Re=3856條件下 A網格主流向之擾動速度統計穩定(Vortex Shedding Period,VSP) 54 圖3-6 Re = 3856 條件下A網格側流向之擾動速度統計穩定(Vortex Shedding Period,VSP) 54 圖3-7 Re = 9959條件下 A網格主流向之平均速度統計穩定(Vortex Shedding Period,VSP) 55 圖3-8 Re = 9959條件下 A網格側流向之平均速度統計穩定(Vortex Shedding Period,VSP) 55 圖3-9 Re = 9959 條件下A網格主流向x之擾動速度統計穩定(Vortex Shedding Period,VSP) 56 圖3-10 Re = 9959 條件下A網格側流向y之擾動速度統計穩定(Vortex Shedding Period,VSP) 56 圖3-11 Re = 3856 條件下B網格主流向之平均速度統計穩定(Vortex Shedding Period,VSP) 57 圖3-12 Re = 3856條件下 B網格側流向之平均速度統計穩定(Vortex Shedding Period,VSP) 57 圖3-13 Re = 3856條件下 B網格主流向之擾動速度統計穩定(Vortex Shedding Period,VSP) 58 圖3-14 Re = 3856條件下 B網格側流向之擾動速度統計穩定(Vortex Shedding Period,VSP) 58 圖3-15 Re = 9959條件下 B網格主流向之平均速度統計穩定(Vortex Shedding Period,VSP) 59 圖3-16 Re=9959 條件下B網格側流向之平均速度統計穩定(Vortex Shedding Period,VSP) 59 圖3-17 Re= 9959條件下 B網格主流向之擾動速度統計穩定(Vortex Shedding Period,VSP) 60 圖3-18 Re = 9959條件下 B網格側流向之擾動速度統計穩定(Vortex Shedding Period,VSP) 60 圖3-19 迴流區加密之C-mesh示意圖 61 圖3-20網格A、B、C之獨立驗證與X-wire實驗值於主流向平均速度(Re = 3856) 61 圖3-21網格A、B、C之獨立驗證與X-wire實驗值於側流向平均速度(Re = 3856) 62 圖3-23網格A、B、C之獨立驗證與X-wire實驗值於側流向擾動速度(Re = 3856) 63 圖3-24網格A、B、C之獨立驗證與X-wire實驗值於主流向平均速度(Re = 9959) 63 圖3-25網格A、B、C之獨立驗證與X-wire實驗值於側流向平均速度(Re = 9959 ) 64 圖3-28 A網格於(a) x/D = 3 (b) x/D = 5 at y/D = 0之頻譜圖(雷諾數Re = 3856) 66 圖3-29 B網格於(a) x/D = 3 (b) x/D = 5 at y/D = 0之頻譜圖(雷諾數Re = 3856) 67 圖3-30 A網格於(a) x/D = 3 (b)x/D = 5 at y/D = 0之頻譜圖(雷諾數Re = 9959) 68 圖3-31 B網格於(a)x/D = 3 (b)x/D = 5 at y/D = 0之頻譜圖(雷諾數Re = 9959) 69 圖4-1 D網格示意圖 70 圖4-2 高雷諾數(Re = 9959)之瞬時次格點動能(time =0.77 sec) 71 圖4-3 高雷諾數(Re = 9959)之總紊流動能分佈 71 圖4-4 低雷諾數(Re = 3856)之瞬時次格點動能(time =1.4 sec) 72 圖4-5 低雷諾數(Re = 3856)之總紊流動能分佈 72 圖4-6 Re = 3856條件下A、D網格與X-wire實驗值之主流向平均速度…73 圖4-7 Re = 3856條件下A、D網格與X-wire實驗值之側流向平均速度…73 圖4-8 Re = 3856條件下A、D網格與X-wire實驗值之主流向平方均根擾動速度比較 74 圖4-9 Re = 3856條件下A、D網格與X-wire實驗值之側流向平方均根擾動速度比較 74 圖4-10 Re = 9959條件下A、D網格與X-wire實驗值之主流向平均速度比較 75 圖4-11 Re = 9959條件下A、D網格與X-wire實驗值之側流向平均速度比較 75 圖4-12 Re = 9959條件下A、D網格與X-wire實驗值之主流向平方均根擾動速度比較 76 圖4-13 Re = 9959條件下A、D網格與X-wire實驗值之側流向平方均根擾動速度比較 76 圖4-14 Re = 3856條件下x/D=5, y/D = 0處A、D網格頻譜(frequency :HZ) 77 圖4-15 Re = 9959條件下x/D=5, y/D = 0處A、D網格頻譜(frequency :HZ) 77 圖 4-16 Re = 3856條件下不同之進口條件與實驗值X-wire於主流向平均速度比較 78 圖 4-17 Re = 3856條件下不同之進口條件與實驗值X-wire於側流向平均速度比較 78 圖 4-18 Re = 3856條件下不同進口條件與實驗值X-wire於主流向平方均根擾動速度比較 79 圖 4-19 Re = 3856條件下不同進口條件與實驗值X-wire於側流向平方均根擾動速度比較 79 圖4-20 Re = 3856條件下之主流向平均速度分佈(a) Method 1 (b) Method 2 80 圖4-21 Re = 3856條件下主流向平方均根之擾動速度分佈圖(a) Method 1(b) Method 2 81 圖 4-22 Re = 9959條件下不同進口條件與實驗值X-wire於主流向平均速度比較 82 圖 4-23 Re = 9959條件下不同之進口條件與實驗值X-wire於側流向平均速度比較 82 圖 4-24 Re =9959條件下不同進口之條件與實驗值X-wire於主流向平方均根擾動速度比較 83 圖 4-25 Re =9959條件下不同進口條件與實驗值X-wire於側流向平方均根擾動速度比較 83 圖4-26 Re = 9959條件下之主流向平均速度分佈(a) Method 1 (b) Method 2 84 圖4-27 Re = 3856條件下不同次格點模型與實驗值X-wire之主流向平均速度比較 85 圖4-28 Re = 3856條件下不同次格點模型與實驗值X-wire之側流向平均速度比較 85 圖4-29 Re = 3856條件下不同次格點模型與實驗值X-wire之主流向平方均根擾動速度比較 86 圖4-30 Re = 3856條件下不同次格點模型與實驗值X-wire之側流向平方均根擾動速度比較 86 圖4-31 Re = 3856不同次格點模型之雷諾應力分佈圖(a) D.S.M (b) D.K.E.M 87 圖4-32 Re = 3856條件下不同次格點模型之雷諾應力於截面x/D =1.3比較 88 圖4-33 Re = 3856條件下不同次格點模型與實驗值之頻譜於(a) x/D = 4.4,y/D =0 (b) x/D = 4.4, y/D=0.6 (frequency :HZ) 89 圖4-34 Re = 9959條件下不同次格點模型與實驗值X-wire之主流向平均速度比較 90 圖4-35 Re = 9959條件下不同次格點模型與實驗值X-wire之側流向平均速度比較 90 圖4-36 Re = 9959條件下不同次格點模型與實驗值X-wire之主流向平方均根擾動速度比較 91 圖4-37 Re = 9959條件下不同次格點模型與實驗值X-wire之側流向平方均根擾動速度比較 91 圖4-38 Re = 9959條件下不同之次格點模型之雷諾應力分佈(a) D.S.M (b) D.K.E.M 92 圖4-39 Re = 9959條件下不同次格點模型之雷諾應力於截面x/D = 1.8之比較 93 圖4-40 Re = 9959條件下不同次格點模型與實驗值之頻譜於(a) x/D = 3.6,y/D =0 (b) x/D = 3.6, y/D=0.6 (frequency : HZ) 94 圖4-41 Re = 3856條件下LES計算值與不同儀器之實驗值於主流向平均速度比較 95 圖4-42 Re = 3856條件下LES計算值與不同儀器之實驗值於側流向平均速度比較 95 圖4-43 Re = 3856條件下LES計算值與不同儀器之實驗值於主流向平方均根擾動速度比較 96 圖4-44 Re = 3856條件下LES計算值與不同儀器之實驗值於側流向平方均根擾動速度比較 96 圖4-45 Re = 9959條件下LES計算值與不同儀器之實驗值於主流向平均速度比較 97 圖4-48 Re = 9959條件下LES計算值與不同儀器之實驗值於側流向平均速度比較 97 圖4-47 Re = 9959條件下LES計算值與不同儀器之實驗值於主流向平方均根擾動速度比較 98 圖4-48 Re = 9959條件下LES計算值與不同儀器之實驗值於側流向平方均根擾動速度比較 98 圖4-49 shear vortices之示意圖( Dong et al. (2006)) 99

    [1] Parnaudeau et al., “Experimental and Numerical Studies of the Flow over a Circular Cylinder at Reynolds Number 3900.”,2008
    [2] Lysenko, Ertesvåg, and Rian, “Large-Eddy Simulation of the Flow over a Circular Cylinder at Reynolds Number 3900 Using the Openfoam Toolbox.”,2012
    [3] Dong et al., “A Combined Direct Numerical Simulation–particle Image Velocimetry Study of the Turbulent near Wake.”,2006
    [4] Kornhaas, Sternel, and Sch, Influence of Time Step Size and Convergence Criteria on Large Eddy Simulations with Implicit Time Discretization.,2008
    [5] Breuer, “Large Eddy Simulation of the Subcritical Flow Past a Circular Cylinder : Numerical and Modeling Aspects.”,1998
    [6] Leonard,“The Ultimate conservative difference scheme applied to unsteady one dimensional advection.pdf.”,1991
    [7] Franke, “Large Eddy Simulation of the Flow Past a Circular Cylinder at ReD=3900.”,2002
    [8] 劉育政, “3D Large Eddy Simulation of Mixing Layer Flow Field.”,2009
    [9] Montorfano, Piscaglia, and Ferrari, “Inlet Boundary Conditions for Incompressible LES,: A Comparative Study.”
    [10] 陳宇杰, “Large Eddy Simulation of Turbulent Backward-Facing Step Flow.”,2013
    [11] Mathey et al., “Assessment of the Vortex Method for Large Eddy Simulation Inlet Conditions.”,2006
    [12] 石昌隆, “Investigation of Velocity Measurement Technology in Turbulent Wake Over the Circular Cylinider.”,2015
    [13] M. Germano, U. Piomeli, P. Moin, and W. Cabot, “A Dynamic Subgrid-Scale Eddy Viscosity Model.”,1991
    [14] Kim and Menon, “Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows.”,1997
    [15] ANSYS Inc., ANSYS FLUENT 15.0.0 User’s Guide.,2013
    [16] Pope, “Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows.”,2004
    [17] Kim and Menon, “Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows.”,1997
    [18] Sakamoto, H. Haniu, Sakamoto, and Haniu, “A Study on Wortex Shedding From Spheres in a Uniform Flow.”,1990
    [19] Yoshie, R., Tanaka,“Technique For Simultaneously Measuring Fluctuating Velocity.”,2007
    [20] Frohlich et al., “Large Eddy Simulation of Flow around Circular Cylinders on Structured and Unstructured Grids, II.”,2001

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE