簡易檢索 / 詳目顯示

研究生: 許逸君
Hsu, I-Chun
論文名稱: 熱壓釹鐵硼合金之優選方位對磁性質的影響
Effect of Preferred Orientation on Magnetic Property in Nd-Fe-B Alloy after Hot Deformation
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 116
中文關鍵詞: 釹鐵硼優選方向熱變形背向散射電子
外文關鍵詞: NdFeB, Preferred orientation, Hot deformation, EBSD
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來綠色能源科技的發展,人們在科技產品的要求上不僅要求輕薄短小,更要高效能,磁石材料在3C科技產業內具有推動進步的能力,其中又以釹鐵硼材料的高磁能積表現最為優異,在熱壓變形後的釹鐵硼磁石具有在{001}方向的磁晶異向性。
    本研究是藉由進行不同的熱變形製程,使得試片變形以達到良好的磁晶異向性,分析方法以電子背向散射(Electron backscatter diffraction, EBSD)的相鑑定與X光繞射儀(X-ray Diffraction, XRD)分析釹鐵硼材料磁石之顯微組織及優選方位(Preferred orientation)。XRD分析結果顯示釹鐵硼合金為Nd2Fe14B的四面體結構,而熱壓型釹鐵硼磁石在<00L>方向上隨著壓縮量的上升有明顯的優選方位,EBSD與XRD之{001}極圖的量測與其結果相符,由此種方式可以知道EBSD與XRD同時具有量測優選方向的能力,文獻上多呈現以壓縮量的不同去量測其磁性質的差異,本研究從優選方向結合磁性質的比較,可以更容易以微觀組織的分析側向得知其磁性質的優異程度。
    而在微觀的分析上,我們從光學顯微鏡與電子顯微鏡觀察出其隨著壓縮量的不同,呈現不同的樣貌,藉由計算其薄帶與晶粒的大小,加以佐證在不同的變形量及製程溫度下,其所造成的微觀組織的不同,進而探討微觀組織對磁性質的影響,而從XRD的數據中,我們藉由取出其強度與未變形的資料庫的強度做比較,可以求得一指標係數-織構係數,由此算出其結晶面是否具有優選方向的性質,此性質所具的代表性為巨觀下的分析,另外在EBSD的數據分析上,我們藉由PF的分析,可以算出不同的試片在{001}方向上的強度貢獻,藉這樣的分析,可以從微觀中加以佐證與巨觀下的性質是否相符,而也使用SQUID-VSM得到試片的磁特性,再與其微觀組織分析一起討論,將會得知變形量與磁性質及微結構三者彼此的關係。

    In our research, we want to study for different deformation degrees would influence the texture coefficient and preferred orientation property. We use the CSC GLEEBLE-1500 to do the hot pressing, doing two parameters by three different working temperature and four different deformation degrees to compare with. From our results, the deformation degrees increase help to increase the anisotropy property, and also increase the magnetic energy product. The best parameter is working temperature under 750oC, and a deformation degree of 65%.

    摘要 Ⅰ 英文延伸摘要 Ⅲ 致謝 Ⅹ 總目錄 ⅩⅠ 表目錄 ⅩⅤ 圖目錄 ⅩⅥ 符號 ⅩⅩⅤ 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1磁性基礎理論 3 2.1.1材料磁性來源與分類 3 2.1.2磁滯曲線 8 2.1.3磁硬化機制 11 2.1.4磁性異向性與磁的交互作用 13 2.2磁石材料簡介 15 2.3釹鐵硼合金之製備與結構 19 第三章 實驗流程與分析方法 22 3.1 實驗材料與流程 22 3.2 熱壓試片製備 23 3.2.1動態熱機製程參數 23 3.2.1分析試片準備 24 3.3 材料結構分析. 25 3.3.1 OM表面形貌觀察 25 3.3.2 XRD 結構分析 25 3.3.3 SEM EBSD微結構分析 25 3.4 EDS 化學成份分析 26 3.5 DSC 熱性質分析. 26 3.6磁性質分析. 27 3.6.1 SQUID VSM 磁性質分析 27 3.6.2 MFM觀察 27 第四章 實驗結果 28 4.1 前期優選方向及壓縮參數之測試 28 4.1.1 優選方向前期測試 28 4.1.2 壓縮實驗造成影響探討 33 4.2 化學性質分析 36 4.2.1 DSC 熱性質分析 36 4.2.2 EDS 化學成份分析. 38 4.3 微結構分析. 41 4.3.1 OM表面形貌觀察 41 4.3.2 XRD 結構分析與織構異向性的分析. 48 4.3.3 SEM微結構分析 56 4.3.4 EBSD微結構及優選方向分析 64 4.4磁性質分析. 83 4.4.1 SQUID VSM 83 4.4.2 MFM磁區觀察 88 第五章 討論 101 5.1 變形量與微結構之關係 101 5.2 微結構與磁性質之關係 107 5.3 優選方向與磁性質的關係 108 第六章 結論 110 參考文獻 112

    [1] O. Gutfleisch, M. A. Willard, E.Bruck, C.H. Chen, S.G. Sankar, and J. Ping Liu, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Adv. Mater, Vol.23, pp.821-842 (2011).
    [2] 金重勳等人,磁性技術手冊,中華民國磁性技術協會,pp.5-49(2002),中華民國 台灣.
    [3] S. Sabihuddin, Magnetic Properties of Materials, Siraj’s weblog(2012)
    [4] J. Pommier, P. Meyer, G. Penissard, and J. Ferre, Magnetization Reversal in Ultrathin Ferromagnetic Films with Perpendicular Anisotropy : Domain Observations, Phys. Rev. Lett, pp.2054-2057(1990).
    [5] J.D. Livingston, Soft and Hard Magnetic Materials with Applications, American Society for Metals Symposium Proceedings ,p.72(1986).
    [6] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials second edition, WILEY, pp.115-134(2009), USA New Jersey.
    [7] W.M. Hubbard, E.Adams and J.V. Gilfrich, Magnetic moments of alloys of Gadolinium with Some of the Transition Elements, J.Appl. Phys., Vol.31,pp.368-369 (1960).
    [8] G. Hoffer and K. Strnat, Magnetocrystalline anisotropy of Yco5 and Y2Co17, IEEE Trans. Magn. , Vol.2, pp.487-489(1966).
    [9] K. Strnat, G. Hoffer, J. Olson, W. Ostertag and J.J. Becker, A Family of New Cobalt-base permanent magnet materials, J. Appl.Phys,Vol.38, pp.1001-1002(1967).
    [10]W. A. J. J. Velge and K.H.J. Buschow, Magnetic and crystallographic properties of some rare earth cobalt compounds with CaZn5 structure, J.Appl.Phys,Vol.39, pp.1717-1720(1968).
    [11] D. K. Das, Twenty Million Energy Product Samarium-Cobalt Magnet, IEEE Trans. Magn.,Vol.MAG-5,pp.214-216(1969).
    [12] D.L. Martin, and M. G. Benz, Magnetic Properties of Cobalt-Rare Earth Magnets for Microwave Applications, IEEE Trans. Magn. , Vol. MAG-7, pp.291-294(1971).
    [13] M. G. Benz, and D. L. Martin, Measurement of Magnetic Properties of Cobalt-Rare Earth Permanent Magnets, IEEE Trans. Magn., Vol. MAG-7, pp.285-291(1971).
    [14] G. Y. Chin, M. L. Green, E. A. Nesbitt, R. C. Sherwood, and J. H. Wernick, Directional Solidification of Co-Cu-R Permanent-Magnet Alloys, IEEE Trans. Magn., Vol.MAG-8, pp.29-35 (1972).
    [15] A. E. Clark and H. S. Belson, Giant Room-Temperature Magnetostrictions in TbFe2 and DyFe2, Phys. Rev. B, Vol.5 ,pp.3642-3644(1972).
    [16] J. F. Herbstand, and J. J. Croat, Neodymium-Iron-Boron Permanent Magnets, J. Magn. Magn. Mater , Vol.100, pp.57-78(1991).
    [17] J. J. Croat, Crystallization and Magnetic Properties of Melt-Spun Neodymium-Iron Alloys, J. Magn. Mater. ,Vol.24,pp.125-131(1981).
    [18] J .J .Croat, Permanent Magnet Properties of Rapid Quenched Rare Earth-Iron alloys, IEEE Trans. Magn. , Vol.Mag-18, pp.1442-1447(1982).
    [19] N. C. Koon, C. M. Williams and, B. N. Das, Giant Magnetostriction Materials, J. Magn. Magn. Mater.,Vol.100, pp.173-185(1991).
    [20] J.J.Becker, Rapidly Quenched Metals for Permanent Magnet Materials, J. Appl. Phys., Vol.55, pp.2067-2072(1984).
    [21] G.C. Hadjipanayis, R. C. Hazelton, and K. R. Lawless, Cobalt Free Permanent Magnet Materials Base on Iron-Rare-Earth alloys, J .Appl. Phys., Vol.55, pp.2073-2077(1984).
    [22] H. H. Stadelmaier ,and H. K. Park, The System Iron-Gadolinium-Carbon And It’s Ternary Carbides, Z. Metallked., Vol.72 , pp.417-422(1981).
    [23] M. Sagawa, S. Fujimurs, N. Togawa, H. Yamamoto, and Y. Matsuura, New Materials for Permanent Magnets on A Base of Nd and Fe, J. Appl. Phys., Vol.55, pp.2083-2087(1984).
    [24] J. J. Croat, Current Status of Rapidy Solidified Nd-Pr-B Permanent Magnets, IEEE Trans. Magn.,Vol.25, pp.3550-3554(1989).
    [25] D. J. Sellmyer, A. Ahmed, G. Muench , and G. Hadjipanayis, Magnetic Hardening in Rapidly Quenched Fe-Pr and Fe-Nd Alloys, J.Appl. Phys, Vol.55, p.2088-2090(1984).
    [26] R. W. Lee, Hot-Pressed Neodymium-Iron-Boron Magnets, Appl. Phys. Lett, Vol.46, p.790 (1985).
    [27] Y. Kaneko, Highest Performance of Nd-Fe-B Magnet over 55MGOe, IEEE, Vol.35 No.5, pp.3275-3278(2000).
    [28] W. Rodewald, B. Wall, M. Katter, and K. Uestuener, Top Nd-Fe-B Magnets with Greater Than 56 MGOe Energy Density and 9.8kOe Coercivity, IEEE, Vol.38 ,pp.2955-2957(2002).
    [29] M. Yue , M. Tian , J. X. Zhang, D.T. Zhang, P. L. Niu, and F. Yang, Microstructure and magnetic properties of anisotropic Nd-Fe-B magnets produced by spark plasma sintering technique, Mater. Sci. Eng. B, Vol.131, pp18-21(2006).
    [30] J. F. Herbst, R2Fe14B materials : Intrinsic Properties and Technological Aspects, Rew. Mod. Phys. , Vol.63, pp.819-898(1991).
    [31] J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, Pr-Fe and Nd-Fe-based materials : A New Class of High-Performance Magnet, J. Appl. Phys., Vol.55.pp.2078-2082(1984).
    [32] J. Li, Y. Liu, Y. Ma, Effect of Niobium of Microstructure and Magnetic Properties of Bulk Anisotropy NdFeB/α-Fe Nanocomposites, J. Magn. Magn. Mater., Vol.324, pp.2292-2297(2012).
    [33] R. K. Mishra, The development of the microstructure of die-upset Nd-Fe-B magnet, J. Magn. Magn. Mater., Vol.84, pp89-94(1990).
    [34] W. Grunberger, D. Hinz, A. Kirchner, K. H. Muller, and L. Schult, Hot Deformation of Nanocrystalline Nd-Fe-B Alloys, IEEE Trans. Magn., Vol.33, pp.2889-2891(1997).
    [35] G. Yang, Y. Yang, D. Lu, K. L. Huang, and J. Wang, Effect of Heating Rate on The Densification of NdFeB Alloys Sintered by An
    Electric Field, Int. J. Min. Met. Mater.,vol.19, pp.1023-1028(2012).
    [36] D. N. Lee, A model for development of orientation of vapour deposits, J. Mater. Sci.,vol.24, pp.4375-4378(1989).
    [37] J. M. D. Coey, Hard Magnetic Materials : A Perspective, IEEE Trans. Magn., vol.47, pp.4671-4681(2011).
    [38] P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagram, ASM INTERNATIONAL, 1995, pp.5601-5606.

    下載圖示 校內:2016-08-11公開
    校外:2016-08-11公開
    QR CODE