| 研究生: |
劉威麟 Liou, Wei-lin |
|---|---|
| 論文名稱: |
以分子動力學探討5CB液晶分子在具溝槽結構之PI基板上的配向機制 Study on alignment of 5CB liquid crystal on grooved PI substrate by molecular dynamic simulation |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 有序參數 、配向 、液晶 、分子動力學 |
| 外文關鍵詞: | order parameter, alignment, molecular dynamics, liquid crystal |
| 相關次數: | 點閱:94 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
United Atom是分子動力學中模擬高分子的一種方式,其主要是由於龐大計算量因應而生,United Atom也可看成CGMD (Coarse-Grained Molecular Dynamics)的其中一種,其優點即減少不必要的龐大計算量,又能兼顧模擬結果跟實際的吻合度。液晶顯示器的最佳化設計一直是近年來研究的主要議題,其中面板結構中配向膜上的溝槽結構,其產生的錨定力對未加電場前的液晶有重要的配向影響,故未加電場前配向膜上的液晶配向,是影響其顯示效能的其中一個重要因素。本文主要運用分子動力學模擬小尺度下,在PI分子組成的配向膜上,製作不同溝槽深寬比對液晶配向的影響,而配向的優劣主要是依據有序參數的大小。模擬結果顯示,基板上製作奈米尺度的溝槽確實有助於提高液晶分子的有序參數;但是,單純改變溝槽深度、寬度、或其比值,對有序參數的影響則並無顯著的規則性。
United atom is a method to simplify a large molecule, that is generally composed of several kinds of atoms, to a few particles. Consequently, the time of calculation can be significantly reduced. In other words, the method of united atom can be also considered as a special kind of Coarse-Grained Molecular Dynamics. The optimum design of liquid crystal display has attracted great attention in recent decade. The microgroove on the substrate may improve the alignment of liquid crystals on the layer. The anchoring strength due to the microgroove structure on the alignment layer can also be effectively enhanced. It means the alignment of liquid crystal is the point for the performance of liquid crystal display. The main objective of this study is to investigate the influence of microgroove on the alignment of the liquid crystals by molecular dynamics analysis. The effects of the depth and the width of microgroove on the alignment of liquid crystals are also estimated by using the order parameter. It is found that the adoption of microgroove in nanometer scale does improve the order parameter of liquid crystals by approximately 10%. However, the tendency of influence is not clear by only changing the width, the depth, or the ratio of microgroove.
[1] R. E. Rudd and J. Q. Broughton, “Coarse-grained Molecular Dynamics and Atomic Limit of Finite Elements”, Phys. Rev. B, Vol. 58, No. 10, pp. R5893-R5896, 1998.
[2] J. M. Ilnytskyi, M. R. Wilson, ”Moleculars models in computer of liquid crystals”, Journal of Molecular Liquids, Vol. 92, pp. 21-28, 2001.
[3] A. V. Zakharov and A. Maliniak, ”Structure and elastic properties of a nematic liquid crystal: A theorectical treatment and molecular dynamics simulation”, Eur. Phys. J. E. , Vol. 4, pp. 85-91, 2001.
[4] A. A. Darinskii, A. Zarembo, N. K. Balabaev, I. M. Neelov, F. Sundholm,“Molecular dynamics simulation of a flexible polymer network in a liquid crystal solvent;structure and equilibrium properties”, polymer, Vol. 45, pp. 4857-4866.
[5] A. V. Komolkin, A. Laaksonen, and A. Maliniak, ”Molecular dynamics simulation of a nematic liquid crystal”, J. Chem. Phys., Vol. 101, pp. 4103-4116, 1994.
[6] C. Mcbridge, M. R. Wilson and J. A. K. Howard, ”Molecular dynamics simulations of liquid crystal phases using atomistic potentials”, Molecular Physics, Vol. 93, No. 6, pp. 955-964, 1998.
[7] N. F. A van der Vegt, F. M. Plathe, A. Gelebus, D. Johannsmann, ”Orientation of liquid crystal monolayers on polyimide alignment layers: A molecular dynamics simulation study”, Journal of Chemical Physics, Vol. 115, No. 21, pp. 9935-9945, 2001.
[8] M. I. Capar, E. Cebe, ”Molecular dynamic study of the odd-even effect in some 4-n-alkyl-4´-cyanobiphenyls”, Physical Review E, Vol. 73, pp. 061711, 2006.
[9] A. J. McDonald and S. Hanna,”Atomistic simulation of a model liquidcrystal, The Journal of Chemical Physics, Vol. 124, pp. 164906, 2006.
[10] M. A. Bates, C. Zannoni, ”A molecular dynamics simulation study of the nematic-isotropic interface of a Gay-Berne liquid crystal”, Chemical Physics Letters, Vol. 280, pp. 40-45, 1997.
[11] E. Gwozdz, K. Pasterny, A. Brodka, ”Molecular dynamics simulation study of polar liquid crystal molecules in slit pores”, Chemical Physics Letters, Vol. 329, pp. 106-111, 2000.
[12] E. Gwozdz, K. Pasterny, A. Brodka,“Planar anchoring of polar liquid crystal molecules in slit pore-molecular dynamics simulation study”, Chemical Physics Letters, Vol. 335, pp. 71-76, 2001.
[13] S. Sarman and D. J. Evans, ”Self-diffusion and heat flow in isotropic and liquid crystal phases of the Gay-Berne fluid”, J. Chem. Phys., Vol. 99, No. 1, pp. 620-627, 1993.
[14] D. R. Binger and S. Hanna, ”Computer simulation of interactions between liquid crystal molecules and polymer surfaces I.Alignment of nematic and smectic A phases”, Liquid Crystals, Vol. 26, No. 8, pp. 1205-1224, 1999.
[15] S. Kuwajima, A. Manabe, ”Computing the rotational viscosity of nematic liquid crystals by an atomistic molecular dynamics simulation”, Chemical Physics Letters, Vol. 332, pp. 105-109, 2000.
[16] D. R. Binger and S. Hanna, ”Computer simulation of interactions between liquid crystal molecules and polymer surfaces III.Use of pseudopotentials to represent the surface”, Liquid Crystals, Vol. 28, No. 8, pp. 1215-1234, 2001.
[17] H. Lange, F. Schmid, “Surface abchoring on liquid crystalline polymer brushes”, Computer Physics Communications, Vol. 147, pp. 276-281, 2002.
[18] M. Kimura, Y. Ohta, T. Akahane, “Surface Azimuthal Anchoring Energy between the Trapezoid Grating Surface and Nematic Liquid Crystal Layer Studied by Finite Element Method”, AZojomo, Vol. 1, pp.1-11, 2005.
[19] K. Kiyohara, K. Asaka, H. Monobe, N. Terasawa, Y. Shimizu, “Surface anchoring of rodlike molecules on corrugated substrates”, The Journal of Chemical Physics, Vol. 124, pp. 034704, 2006.
[20] J. I. Fukuda, M. Yoneya, H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined”,
Physical Review Letters, Vol. 98, pp. 187803,2007.
[21] Y. F. Lin, M. C. Tsou, R.P. Pan, “Alignment of Liquid Crystals by Ion Etched Grooved Glass Surfaces”, Chinese Journal of Physics, Vol. 43, No. 6, pp. 1066-1073, 2005.
[22] Y. F. Lin, S. Y. Lu, R. P. Pan, “Temperature Dependence of Azimuthal Anchoring Strength of Liquid Crystals on Microgrooved Glass Substrate”, Japanese Journal of Applied Physics, Vol. 44, No. 12, pp. 8552-8556, 2005.
[23] J. H. Irving, J. G. Kirkwood, J. Chem. Phys., Vol. 18, pp. 817, 1950.
[24] J. E. Lennard-Jones, Proc. Roy. Soc. Lond., 1924.
[25] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No. 3, pp. 687-690, 1959.
[26] S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-Atom Method function for the fcc metals Cu,Ag,Au,Ni,Pd,Pt and their alloys”, Phys. Rev. B, Vol. 33, No. 12, pp. 7983-7991, 1986.
[27] M. I. Baskes, J. S. Nelson and A. F. Wright, “Semiempirical modified embedded-atom potentials for silicon and germanium”, Phys. Rev. B, Vol. 40, No. 9, pp.6085-6100, 1989.
[28] M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities”, Phys. Rev. B, Vol. 46, No. 5, pp. 2727-2742, 1992.
[29] M. S. Daw, S. M. Faoiles and M. I. Baskes, “The embedded-atom method: a review of theory and applications ”, Material Science Report., Vol. 9, pp. 251-310, 1993.
[30] J. M. Hailie, “Molecular Dynamics Simulation Elementary Methods”, New York: John Wiley&Sons.Inc., 1993.
[31] Natale Neto, ”A new approach to constrained molecular dynamics”, Journal of Molecular Structure, Vol. 563-564, pp. 135-139, 2001.
[32] S. L. Mayo, B. D. Olafson, and W. A. Goddard III, ”Dreiding:A Generic Force Field for Molecular Simulations”, J.Phys.Chem., Vol. 94, pp. 8897-8909, 1990.
[33] W. G. Hoover, ”Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, Vol. 31, No. 3, pp. 1695-1697, 1985.
[34] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr. and P. Weiner, ”A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins”, J. Am. Chem. Soc, Vol. 106, pp. 765-784, 1984.
[35] D. R. Binger and S. Hanna, ”Computer simulation of interactions between liquid crystal molecules and polymer surfaces II.Alignment of smectic C-forming mesogens”, Liquid Crystals, Vol. 27, No. 1, pp. 89-102, 2000.
[36] P. K. Weiner and P. A. Kollman, ”Amber:Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions”, Journal of Computational Chemistry, Vol. 2, No. 3, pp. 287-303, 1981.
[37] C. J. Yu, J. H. Park, S. D. Lee, ”Determination of surface anchoring energies of liquid crystals by optical diffraction”, Applied surface science, Vol. 238, pp. 385-389, 2004.
[38] K. Jian, H. S. Shim, D. T. Dubrow, S. Bernstein, C. Woodward, M. Pfeffer, D. Steingart, T. Gournay, S. Sachsmann, G. P. Crawford, R. H. Hurt, “Liquid crystal surface anchoring of mesophase pitch”, Carbpn, Vol. 41, pp. 2073-2083, 2003.
[39] V. P. Vorflusev, H. S. Kitzerow, and V. G. Chigrinov, ”Azimuthal surface gliding of a nematic liquid crystal”, Appl. Phys. Lett., Vol. 70, No. 25, pp. 3359-3361, 1997.
[40] S. Sarman, ”Molecular of liquid crystals”, Physic A, Vol. 240, pp. 160-172, 1997.
[41] F. Grinberg, R. Kimmich,and S. Stapf,”Molecular Dynamics and Order of Microconfined Liquid Crystals ”, Magnetic Resonance Imaging, Vol. 16, pp. 635-637, 1998.
[42] S. S. Patnaik, R. Pachter, ”Anchoring characteristics and interfacial interactions in a polymer dispersed liquid:a molecular dynamics study”, Polymer, Vol. 40, pp. 6507-6519, 1999.
[43] W. Shinoda and S. Okazaki, ”Molecular dynamics study of the dipalmitoyl phosphatidylcholine bilayer in the liquid crystal phase:An effect of the potential force fields on the membrane structure”, Journal of Molecular Liquids, Vol. 90, pp. 95-103, 2001.
[44] M. Reichenstein, H. Stark, J. Stelzer, and H. R. Trebin, ”Motion, crestion, and annihilation of disclinations in multidomain structured nematic liquid crystal cells”, Physical Review E, Vol. 65, pp. 011709, 2001.
[45] H. Fukunaga, J. I. Takimoto, T. Aoyagi, T. Shoji, F. Sawa and M. Doi, ”Parameterization of the Gay-Berne Potential for nCB and Molecular Dynamics Simulation of 5CB”, Mol. Cryst. and Liq. Cryst, Vol. 365, pp. 739-746, 2001.
[46] D. L. Cheung, S. J. Clark, M. R. Wilson, ”Calculation of the rotational viscosity of a nematic liquid crystal”, Chemical Physics Letters, Vol. 356, pp. 140-146, 2002.
[47] G. Rienacker, M. Kroger, S. Hess, ”Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals”, Physica A, Vol. 315, pp. 537-568, 2002.
[48] J. P. Marcerou, M. P. Petrov, H. Naradikian, H. T. Nguyen, ”Dendrite-like texture growth in the nematic liquid crystal phase of 4-n-heptyl and 4-n-octyl-oxybenzoic acids aligned by a polyimide coating”, Liquid Crystals, Vol. 31, No. 3, pp. 311-316, 2004.
[49] F. Vaca Chavez, R. H. Acosta, D. J. Pusiol, ”Molecular dynamics above the smectic A-isotropic phase transition of thermotropic liquid crystals studied by NMR”, Chemical Physics Letters, Vol. 392, pp. 403-408, 2004.
[50] 王恆杰, ”修正勢能函數式CGMD在奈米壓痕的應用”, 國立成功大學, 碩士論文, 2007.
[51] 林彥宏, ”奈米壓痕之表面層效應與結構變化探討”, 國立中正大學, 碩士論文, 2005.
[52] 李泳達, ”以分子動力學探討奈米碳管儲氫與流動之特性”, 國立中正大學, 碩士論文, 2004.
[53] 陳其偉, ”反射式超扭轉形向列型液晶的顯示特性探討”, 國立成功大學, 碩士論文, 2002.
[54] 陳俊昌, ”反射式超扭轉向列型液晶顯示器的補償特性探討”, 國立成功大學, 碩士論文, 2003.
[55] 吳盈清, ”蛋白質結構基本單元之物理性質研究”, 國立成功大學, 碩士論文, 2002.
[56] 王新久 著, ”液晶光學和液晶顯示”, 科學出版社, 北京, 2006.
[57] J. M. Haile, “Molecular Dynamics Simulation Elementary Methods”, New York: John Wiley&Sons.Inc.,1993.
[58] D. Dunmur, A. Fukuda, G. Luckhurst, ”Liquid Crystals:Nematics”, London: INSPEC, The Institution of Electrical Engineers, 2001.
[59] 傅永貴, ”液晶材料特性及顯示原理“, 國立成功大學, 教材, 2007.