研究生: |
何旻修 Ho, Min-Hsiu |
---|---|
論文名稱: |
近場靜電紡絲三維結構積層製程技術開發 Development of a Three Dimensional Microstructure Process using Near-Field Electrospinning Technology |
指導教授: |
沈聖智
Shen, Sheng-Chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 靜電紡絲 、壓電纖維 、積層製造 、3D微型結構 |
外文關鍵詞: | Electrospinning, Piezoelectric Fiber, Additive Manufacturing, 3D Microstructure |
相關次數: | 點閱:111 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文整合近場靜電紡絲技術(Near-field Electrospinning, NFES),搭配積層製造技術(Additive Manufacturing, AM)建構三維直立式靜電紡絲結構,改善本實驗室先前開發的金字塔堆疊技術、製程參數以及溶液成分,並以調控製程參數為依據來開發三維直立式結構之堆疊技術。透過近場直寫式靜電紡絲製程參數以分析纖維直徑,並探討溶液組成對堆疊技術的影響。由量測實驗驗證,本論文開發之3D直立式靜電紡絲技術可成功堆疊十層以上之細微結構,在相同壓力下,直立式堆疊結構較前期金字塔堆疊結構可提升約1.3倍的電壓且靈敏度提升約2.6倍,證實直立式堆疊結構可產生較大的電壓與靈敏度。此外,將不同層數的直立式結構進行電壓測試,可以觀察到隨著層數增加,其電壓也會線性增加,未來可拓展於壓電式機電系統的應用與製造。
This paper integrates Near-field Electrospinning(NFES) technology with Additive Manufacturing(AM) process to fabricate 3D microstructure to improve the stacking method and process parameters of the previous process in our laboratory. As well as the composition of the solution , the stacking technology of the three-dimensional vertical structure is developed based on the control process parameters. This paper uses Scanning Electron Microscope (SEM) to observe the fiber stacking results. It can verify the feasibility of the upright fiber structure and successfully stack up to a ten-layer structure. It also confirms that the fibers can be stacked by the process parameters of this paper to produce a 3D fiber vertical microstructure with a certain height. To study the effect of the same layer structure on the “wall” stack structure of this paper and the “Pyramid” stack structure of the previous process, the improvement of the structure increases the voltage by about 1.3 times to verify that the optimized fiber structure can generate a larger voltage. And the voltage test of the fiber structure with different number of layers, it can be observed that as the number of layers increases, the voltage that can be generated will also increase. In the future, it can be expected to increase the number of fiber layers to increase the voltage that can be generated by the fiber structure and develop it to expand the application and manufacturing of piezoelectric microelectromechanical systems (MEMS).
[1] P. Dineva, D. Gross, R. Müller, and T. Rangelov, “Piezoelectric materials,” Dynamic fracture of piezoelectric materials. Springer, Cham, pp. 7-32, 2014.
[2] D. Li and Y. Xia, “Electrospinning of nanofibers: Reinventing the wheel?,” Advanced Materials, vol. 16, no. 14, pp. 1151-1170, 2004.
[3] D. Sun, C. Chang, S. Li, and L. Lin, “Near-field electrospinning,” Nano letters, vol. 6, no. 4, pp. 839-842, 2006.
[4] C. Chang, Y.-K. Fuh, and L. Lin, “A direct-write piezoelectric PVDF nanogenerator,” in TRANSDUCERS 2009-2009 International Solid-State Sensors, Denver, Colorado, 2009.
[5] K. V. Wong and A. Hernandez, “A Review of Additive Manufacturing,” ISRN Mechanical Engineering 2012.
[6] R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen” nanolithography,” science, vol. 283, no. 5402, pp. 661-663, 1999.
[7] H. Sirringhaus et al., “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, no. 5499, pp. 2123-2126, 2000.
[8] G. M. Gratson, M. Xu, and J. A. Lewis, “Direct writing of three-dimensional webs,” Nature, vol. 428, no. 6981, pp. 386-386, 2004.
[9] D. Zhang and J. Chang, “Electrospinning of three-dimensional nanofibrous tubes with controllable architectures,” Nano letters, vol. 8, no. 10, pp. 3283-3287, 2008.
[10] B. Sun et al., “Advances in three-dimensional nanofibrous macrostructures via electrospinning,” Progress in Polymer Science, vol. 39, no. 5, pp. 862-890, 2014.
[11] M. Lee and H.-Y. Kim, “Toward nanoscale three-dimensional printing: nanowalls built of electrospun nanofibers,” Langmuir, vol. 30, no. 5, pp. 1210-1214, 2014.
[12] G. Luo, K. S. Teh, Y. Liu, X. Zang, Z. Wen, and L. Lin, “Direct-write, self-aligned electrospinning on paper for controllable fabrication of three-dimensional structures,” ACS applied materials & interfaces, vol. 7, no. 50, pp. 27765-27770, 2015.
[13] G. Luo, K. S. Teh, X. Zang, D. Wu, Z. Wen, and L. Lin, “High aspect-ratio 3D microstructures via near-field electrospinning for energy storage applications,” 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2016.
[14] A. R. Nagle, C. D. Fay, Z. Xie, G. G. Wallace, X. Wang, and M. J. Higgins, “A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays,” Nanotechnology, vol. 30, no. 19, p. 195301, 2019.
[15] Y.-S. Park et al., “Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios,” Nano Letters, vol. 20, no. 1, pp. 441-448, 2020.
[16] M. E. Helgeson, K. N. Grammatikos, J. M. Deitzel, and N. J. Wagner, “Theory and kinematic measurements of the mechanics of stable electrospun polymer jets,” Polymer, vol. 49, no. 12, pp. 2924-2936, 2008.
[17] G. I. Taylor, “Electrically driven jets,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, no. 1515, pp. 453-475, 1969.
[18] A. L. Yarin, S. Koombhongse, and D. H. Reneker, “Bending instability in electrospinning of nanofibers,” Journal of applied physics, vol. 89, no. 5, pp. 3018-3026, 2001.
[19] J. Xu et al., “Accuracy improvement of nano-fiber deposition by near-field electrospinning,” in IWMF 9th International Workshop on Microfactories, Hawai’i, USA., 2014.
[20] 柯建安, “平面式/滾筒式近場靜電紡絲製程之PVDF/MWCNT壓電纖維機械性質探討” 碩士論文, 機械與機電工程學系研究所, 國立中山大學, 高雄市, 2012。
[21] 鍾主佑, “靜電紡絲之製程特性分析與數值方法的探討” 碩士論文, 機械與機電工程學系研究所, 國立中山大學, 高雄市, 2015。
[22] 吳牧謙, “3D直寫式靜電紡絲積層製造技術開發及設備建構” 碩士論文, 系統及船舶機電工程學系, 國立成功大學, 台南市, 2017。
[23] 吳松恒, “3D近場電紡技術於壓電纖維感測元件之設計與實驗評估” 碩士論文, 系統及船舶機電工程學系, 國立成功大學, 台南市, 2018。