| 研究生: |
徐安 Hsu, An |
|---|---|
| 論文名稱: |
以具電活性自組裝單分子層調控半導體高分子薄膜平面指向性並以導電原子力顯微鏡表徵相應之載子傳輸行為 Tuning planar orientations in semiconducting polymer thin films on electronically-active self-assembled monolayers and characterizing their charge transport by conductive atomic force microscope |
| 指導教授: |
徐邦昱
Hsu, Bang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 聚(3-己基噻吩) 、導電式原子力顯微鏡 、分子間作用力 、自組裝單分子層 |
| 外文關鍵詞: | Poly(3-hexylthiophene), Conductive atomic force microscopy, Self-assembled monolayer, Intermolecular interactions |
| 相關次數: | 點閱:103 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
導電高分子擁有可撓曲、低成本、可溶液製備電子元件等優點,因此被運用於薄膜電機體、發光二極體、太陽能電池等研究領域中。由於分子鏈柔軟的特性,使高分子薄膜在容易呈現無序、或中低的結構,產生許多形貌缺陷,而這些缺陷會降低載子傳導效率與元件效能。因此,本實驗經由調控單分子層之分子平面性及密度,使基板表面傾向產生分子平面交互作用力,在分子作層級控制分子排列取向,以利在垂直元件上的電學表現。首先,越增加單分子層末端環狀分子苯環數,越能誘導高分子呈現π-π堆疊,增加載子遷移率;再者,低密度的單分子層越容易改變末端環狀結構的傾斜角,達到增加分子平面的調控,使高分子傾向面堆疊向上成長,確實觀測到載子遷移率符合理論預期增加,成功展現以單分子層調控分子堆疊取向與傳導效能的可行性。本實驗利用單分子層末端基形狀及密度有成功影響P3HT排列,讓垂直元件的研究邁出第一步。
Conducting polymers have the advantages of flexibility, solution processability, and low cost production for electronic device, so they have been widely studied and applied for the research of organic electronics such as thin film transistors, light emitting diodes, solar cells, etc. Due to the soft molecular chain, polymer films present disordered structures in both microscopic and macroscopic scales, and products defects from molecular to bulk levels. Defects will result in low conduction efficiency of conducting polymers. Such serious drawback comes from complex intermolecular interactions in solution process. Therefore, ordered structures ae essential for high performance organic electronics. We propose that the required controls of ordering conducting polymers are facilitated by the self-assembled monolayers (SAM). We used different planar chemical structures of SAMs to enhance intermolecular interactions, and changed the tilt angle of the planar SAMs by changing their densities. The deposited polymers hence can achieve the regulated molecular plane (favoring face on) to facilitate the vertical transport along the normal direction relative to substrate. Conductive atomic force microscopy (C-AFM) and Polarized Raman Scattering spectroscopy were used to measure the enhanced vertical transport corresponding to their molecular orientations. First, by increasing the number of ring structures at the end-groups of SAMs, the deposited conducting polymers accordingly exhibit the increasing carrier mobility. Furthermore, the low-density SAMs are easier to be tilted at a large angle for the end-groups; therefore, the deposition of conducting polymers on the low-density SAMs of benzene ring and naphthalene ring demonstrated higher carrier mobility. This represents the preliminary success of SAM-oriented polymer stacking.
(1) Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nature materials 2013, 12 (11), 1038-1044.
(2) Ludwigs, S. P3HT revisited-from molecular scale to solar cell devices; Springer, 2014.
(3) Tremel, K.; Ludwigs, S. Morphology of P3HT in thin films in relation to optical and electrical properties. P3HT revisited–from molecular scale to solar cell devices 2014, 39-82.
(4) O'Connor, B.; Kline, R. J.; Conrad, B. R.; Richter, L. J.; Gundlach, D.; Toney, M. F.; DeLongchamp, D. M. Anisotropic Structure and Charge Transport in Highly Strain‐Aligned Regioregular Poly (3‐hexylthiophene). Advanced Functional Materials 2011, 21 (19), 3697-3705.
(5) Skrypnychuk, V.; Boulanger, N.; Yu, V.; Hilke, M.; Mannsfeld, S. C.; Toney, M. F.; Barbero, D. R. Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene. Advanced Functional Materials 2015, 25 (5), 664-670.
(6) McBride, M.; Bacardi, G.; Morales, C.; Risteen, B.; Keane, D.; Reichmanis, E.; Grover, M. A. Control of nucleation density in conjugated polymers via seed nucleation. ACS applied materials & interfaces 2019, 11 (41), 37955-37965.
(7) Gu, K.; Snyder, C. R.; Onorato, J.; Luscombe, C. K.; Bosse, A. W.; Loo, Y.-L. Assessing the huang–brown description of tie chains for charge transport in conjugated polymers. ACS Macro Letters 2018, 7 (11), 1333-1338.
(8) Son, S. Y.; Kim, Y.; Lee, J.; Lee, G.-Y.; Park, W.-T.; Noh, Y.-Y.; Park, C. E.; Park, T. High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. Journal of the American Chemical Society 2016, 138 (26), 8096-8103.
(9) Müller‐Buschbaum, P. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Advanced materials 2014, 26 (46), 7692-7709.
(10) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 2005, 105 (4), 1103-1170.
(11) Ulman, A. Formation and structure of self-assembled monolayers. Chemical reviews 1996, 96 (4), 1533-1554.
(12) Schwartz, D. K. Mechanisms and kinetics of self-assembled monolayer formation. Annual review of physical chemistry 2001, 52, 107.
(13) Dolynchuk, O.; Schmode, P.; Fischer, M.; Thelakkat, M.; Thurn-Albrecht, T. Elucidating the Effect of Interfacial Interactions on Crystal Orientations in Thin Films of Polythiophenes. Macromolecules 2021, 54 (12), 5429-5439.
(14) Moiz, S. A.; Khan, I. A.; Younis, W. A.; Karimov, K. S. Space charge–limited current model for polymers. Conducting Polymers 2016, 5, 91.
(15) Ucurum, C. Understanding and Modeling the Hysteresis in Current-Voltage (I–V) and Capacitance-Voltage (C–V) Characteristics of Organic Thin-Film Transistors. 2013.