簡易檢索 / 詳目顯示

研究生: 張廷有
Chang, Ting-You
論文名稱: 氧化鈰/碳酸鹽複合電解質界面對高溫燃料電池性能提升之重要性
Interface effects of doped Ceria-Carbonate composite electrolyte for High Performance Intermediate Temperature Fuel Cells
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 66
中文關鍵詞: 固-液界面釤摻雜氧化鈰複合電解質中溫燃料電池
外文關鍵詞: solid-liquid interface, samarium-doped cerium oxide, composite electrolyte, intermediate temperature fuel cell
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於較高的工作溫度(800~1000oC),易衍生相變、熱應力、腐蝕、高運行成本等問題,是高溫燃料電池商業化的挑戰之一。近年來,為了降低高溫燃料電池工作溫度,可操作在500-650oC範圍之釤摻雜氧化鈰(Sm0.2Ce0.8O1.9; SDC)/鋰-鈉碳酸鹽(Li0.52Na0.48)2CO3; LNC)複合電解質呈現相當良好的離子導電率和獨特的混合離子傳導行為。但至於多重離子是如何傳導、個別離子的貢獻程度,以及 SDC /碳酸鹽之間界面之貢獻,都仍需要進一步釐清。
    因此本研究之研究目的,是利用固相反應法分別合成SDC、 LNC電解質粉體,再藉凝膠冷凍乾燥法製作多孔SDC電解質基材。然後,將熔融的鋰/鈉碳酸鹽滲入而形成SDC/LNC複合電解質。之後,利用高解析SEM、XRD和電化學阻抗譜(EIS)進行複合電解質之微結構、結構和阻抗分析,以深入了解複合電解質在提升離子傳導之重要貢獻。
    為了進一步檢視SDC/LNC複材系統的多離子傳導在燃料電池,以SDC/LNC複合電解質組裝成單電池,於650°C且H2/O2(air)氣氛下,於獲得340mW/cm2之功率密度。以傳統MCFC的LiAlO2/LNC電解質作為對照組,相較於LiAlO2/LNC電解質的電池154mW/cm2,達兩倍以上之性能表現。SDC/LNC複合電解質所以能有此一性能提升,除了因MCFC中使用惰性之LiAlO2基材被具有良好氧離子導性之SDC基材所取代外,SDC/LNC固-液界面之貢獻也不容忽視。本研究,在固定孔隙率(53vol%)條件下,製備不同孔洞尺寸(5,10,20μm)的多孔基材,以呈現不同固-液界面面積之效應。結果發現,當結構基材的孔洞從20μm改變為5μm時,在650oC下的電功率密度由126mW/cm2提升為340mW/cm2。此一性能提升推測為具5μm孔洞之複合電解質提供有助於離子傳導之龐大界面面積。由高解析穿透式電子顯微鏡之傅立葉轉換分析(Fast Fourier transform (FFT) analysis of the HRTEM),發現由於陽離子在界面交互擴散確實造成SDC表面晶格扭曲,提供離子快速遷移之通道。因此,SDC/LNC複合電解質之界面是有助於其電化學性能之提升。

    Since their high operating temperature (800~1000oC) tends to cause phase transition, thermal degradation, corrosion, high running cost, high temperature fuel cells still remain a number of challenges for commercialization. In recent years, samaria-doped ceria (Sm0.2Ce0.8O1.9; SDC)/((Li0.52Na0.48)2CO3; LNC) composite electrolytes have been developed for fuel cells to be operated at intermediate temperatures (500-650oC). This composite system exhibits impressive ionic conductivity and unique hybrid ionic conduction behavior. However, there are questions for such a composite still remain unclear with regard to the condcution mechanism of multi-ions and contribution of individual ions, especially the interface between SDC and LNC.
    Therefore, the main objective of this study is to fabricate a novel composite using carbonate infiltration into a porous SDC framework otained from a gelation-freeze drying process. This composite were characterizd by High-resolution SEM, XRD, and Electrochemical Impedance Spectroscopy for microstructural, structural and impedance analyses to understand the important contribution of the composite electrolyte in improving ion conduction..
    To further understand the advantage of multi-ion conduction, a single cell assembled using SDC/LNC composite was tested using H2/O2(air) at 650°C. The power density obtained was 340mW/cm2 which is two times as high as that from a conventional MCFC using LiAlO2/LNC electrolyte (154mW/cm2). In comparison to a conventional MCFC using LiAlO2/LNC electrolyte, higher power density of SDC/LNC cell may be attributed to the oxygen conduction from SDC. In addition, the contribution from SDC/LNC interface was examined based on various porous SDC framework with a fixed porosity of 53%. Composite electrolytes were fabricated using porous SDC frameworks with various pore sizes 5, 10, and 20μm. The power density measured from the cell based on a 20μm-pore SDC framework was 126mW/cm2 at 650oC. On the contrary, the power density measured was 340mW/cm2 from the cell based on a 5μm-pore SDC framework. Such enhancement in power density may be attributed to the enlarged interface area from the 5μm-pore SDC framework. From the Fast Fourier transform (FFT) analysis of the HRTEM, it was observed that cation inter-diffusion across the interface causes lattice deformation on SDC surface. The deformed lattice provides the path for ions to transport. As a result, the enlarged interface in SDC/LNC composite electrolyte may promote the ion migration and further enhance the desired electrochemical conversion in fuel cells.

    Chapter 1: Introduction 1 Chapter 2: Literature Review 3 2.1 Fuel cell 3 2.2 Basic principles, components and challenges for solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) 6 2.3 Composite electrolyte for intermediate temperature fuel cells 12 2.4 Ionic conduction mechanism for ceria-carbonate composite electrolyte 16 Chapter 3: Motivation and Objective 19 Chapter 4: Experiment Procedure 21 4.1. Powder synthesis 21 4.2. Fabrication of SDC/LNC composite electrolyte 21 4.3. Characterization 22 4.4. Interface analysis experiment 23 4.5. Single cell fabrication and testing device 24 Chapter 5: Effect of dual phases on SDC/LNC composite electrolytes through microstructure design 26 5.1 Characterization 26 5.1.1 Crystal structure and stability of synthesized powders 26 5.1.2 Microstructure of SDC/LNC composite electrolyte 28 5.2 Total ionic conductivity 31 5.2.1 Effects of different LNC content 31 5.2.2 Comparison of pure SDC, pure LNC and SDC/LNC 35 5.2.3 Comparison of SDC/LNC and LiAlO2/LNC 37 5.3 Performance testing of single cell with SDC/LNC and LiAlO2/LNC as electrolyte support material 42 Chapter 6: Analysis of solid-liquid interface in SDC/LNC composite electrolytes 45 6.1 Influence of interface on total ionic conductivity 45 6.2 Contribution of individual ionic conduction 50 6.3 Fast Fourier transform (FFT) analysis of the HRTEM 55 6.4 Effects of interface on performance testing of single cell 59 Chapter 7: Conclusions 60 Chapter 8: References 62

    1. Fitzgibbons, K., 14. Future prospects and public policy implications for hydrogen and fuel-cell technologies in Canada. 2008.
    2. Lovley, D.R., Microbial fuel cells: novel microbial physiologies and engineering approaches. Current opinion in biotechnology, 2006. 17(3): p. 327-332.
    3. Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects. Electrochimica Acta, 2000. 45(15-16): p. 2423-2435.
    4. Yamahara, K., et al., Influence of powders on ionic conductivity of polycrystalline zirconias. ECS Proceedings Volumes, 2003. 2003(1): p. 187.
    5. Handbook, F.C., EG&G Technical Services, Inc. US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory-Morgantown, West Virginia, 2004.
    6. Kordesch, K. and G. Simader, Fuel cells and their applications. 1996.
    7. Ormerod, R.M., Solid oxide fuel cells. Chemical Society Reviews, 2003. 32(1): p. 17-28.
    8. Carrette, L., K. Friedrich, and U. Stimming, Fuel cells-fundamentals and applications. Fuel cells, 2001. 1.
    9. Ma, Y., Ceria-based nanocomposite electrolyte for low-temperature solid oxide fuel cells. 2009, KTH.
    10. Takahashi, T., T. Esaka, and H. Iwahara, Conduction in Bi 2 O 3-based oxide ion conductors under low oxygen pressure. I. Current blackening of the Bi 2 O 3-Y 2 O 3 electrolyte. Journal of Applied Electrochemistry, 1977. 7(4): p. 299-302.
    11. Ishihara, T., H. Matsuda, and Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. Journal of the American chemical society, 1994. 116(9): p. 3801-3803.
    12. Nafees, A. and R.A. Rasid. Study of natural gas powered solid oxide fuel cell simulation and modeling. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
    13. Salameh, Z., Renewable energy system design. 2014: Academic Press.
    14. Morita, H., et al., Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. Journal of Power Sources, 2002. 112(2): p. 509-518.
    15. Scaccia, S., Investigation on NiO solubility in binary and ternary molten alkali metal carbonates containing additives. Journal of molecular liquids, 2005. 116(2): p. 67-71.
    16. Spedding, P., Electrical conductance of molten alkali carbonate binary mixtures. Journal of The Electrochemical Society, 1973. 120(8): p. 1049.
    17. Kojima, T., et al., Electrical Conductivity of Molten Li2CO3–X2CO3 (X: Na, K, Rb, and Cs) and Na2CO3–Z2CO3 (Z: K, Rb, and Cs). Journal of The Electrochemical Society, 2007. 154(12): p. F222.
    18. Janowitz, K., M. Kah, and H. Wendt, Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts. Electrochimica acta, 1999. 45(7): p. 1025-1037.
    19. Shao, Z. and S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 255-258.
    20. Zhu, K., et al., Enhanced performance of solid oxide fuel cells by introducing a transition layer between nanostructured cathode and electrolyte. international journal of hydrogen energy, 2015. 40(1): p. 501-508.
    21. Esposito, V., et al., Solid-oxide fuel cells, in Epitaxial Growth of Complex Metal Oxides. 2015, Elsevier. p. 443-478.
    22. Huang, P., A. Horky, and A. Petric, Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. Journal of the American Ceramic Society, 1999. 82(9): p. 2402-2406.
    23. Atkinson, A., Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics, 1997. 95(3-4): p. 249-258.
    24. Etsell, T. and S.N. Flengas, Electrical properties of solid oxide electrolytes. Chemical Reviews, 1970. 70(3): p. 339-376.
    25. Haile, S.M., Fuel cell materials and components. Acta materialia, 2003. 51(19): p. 5981-6000.
    26. Hui, S.R., et al., A brief review of the ionic conductivity enhancement for selected oxide electrolytes. Journal of Power Sources, 2007. 172(2): p. 493-502.
    27. Mahato, N., A. Gupta, and K. Balani, Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: a review. Nanomaterials and Energy, 2012. 1(1): p. 27-45.
    28. Ferreira, A.S., et al., Intrinsic and extrinsic compositional effects in ceria/carbonate composite electrolytes for fuel cells. International journal of hydrogen energy, 2011. 36(5): p. 3704-3711.
    29. Benamira, M., et al., Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight. Journal of Power Sources, 2011. 196(13): p. 5546-5554.
    30. Raza, R., et al., Electrochemical study on co-doped ceria–carbonate composite electrolyte. Journal of Power Sources, 2012. 201: p. 121-127.
    31. Wang, X., Y. Ma, and B. Zhu, State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). International journal of hydrogen energy, 2012. 37(24): p. 19417-19425.
    32. Yang, B., et al., A carbon–air battery for high power generation. Angewandte Chemie International Edition, 2015. 54(12): p. 3722-3725.
    33. Raza, R., et al., Improved ceria–carbonate composite electrolytes. International journal of hydrogen energy, 2010. 35(7): p. 2684-2688.
    34. Zuo, N., et al., Fabrication and characterization of composite electrolyte for intermediate-temperature SOFC. Journal of the European Ceramic Society, 2011. 31(16): p. 3103-3107.
    35. Xia, Y., et al., The competitive ionic conductivities in functional composite electrolytes based on the series of M-NLCO (M= Ce0. 8Sm0. 2O2-δ, Ce0. 8Gd0. 2O2-δ, Ce0. 8Y0. 2O2-δ; NLCO= 0.53 Li2CO3–0.47 Na2CO3). International journal of hydrogen energy, 2011. 36(11): p. 6840-6850.
    36. Zhang, L., et al., High conductivity mixed oxide-ion and carbonate-ion conductors supported by a prefabricated porous solid-oxide matrix. Electrochemistry communications, 2011. 13(6): p. 554-557.
    37. Khan, I., P.K. Tiwari, and S. Basu, Development of melt infiltrated gadolinium doped ceria-carbonate composite electrolytes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2019. 294: p. 1-10.
    38. Gao, J., et al., Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Science China Physics, Mechanics & Astronomy, 2014. 57(8): p. 1526-1536.
    39. Wang, X., et al., Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells. Journal of Power Sources, 2011. 196(5): p. 2754-2758.
    40. Huang, J., Z. Gao, and Z. Mao, Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. International journal of hydrogen energy, 2010. 35(9): p. 4270-4275.
    41. Zhu, B., S. Li, and B.-E. Mellander, Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600° C) solid oxide fuel cells. Electrochemistry Communications, 2008. 10(2): p. 302-305.
    42. Maier, J., Ionic conduction in space charge regions. Progress in solid state chemistry, 1995. 23(3): p. 171-263.
    43. Sata, N., et al., Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000. 408(6815): p. 946-949.
    44. Shi, B., et al., Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano letters, 2020. 20(7): p. 5504-5512.
    45. Lu, L.L., et al., Wood‐inspired high‐performance ultrathick bulk battery electrodes. Advanced Materials, 2018. 30(20): p. 1706745.
    46. Braun, P.V., et al., High power rechargeable batteries. Current Opinion in Solid State and Materials Science, 2012. 16(4): p. 186-198.
    47. Bae, C.J., et al., Design of battery electrodes with dual‐scale porosity to minimize tortuosity and maximize performance. Advanced materials, 2013. 25(9): p. 1254-1258.
    48. Li, Y., et al., Enabling high-areal-capacity lithium–sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS nano, 2017. 11(5): p. 4801-4807.
    49. Long, J.W., et al., Three-dimensional battery architectures. Chemical Reviews, 2004. 104(10): p. 4463-4492.
    50. Zhang, H., X. Yu, and P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nature nanotechnology, 2011. 6(5): p. 277-281.
    51. Feng, Y. and B. Yu, Fractal dimension for tortuous streamtubes in porous media. Fractals, 2007. 15(04): p. 385-390.
    52. Badwal, S., F. Ciacchi, and J. Drennan, Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments. Solid state ionics, 1999. 121(1-4): p. 253-262.
    53. Zhu, B. and B.-E. Mellander, Performance of intermediate temperature SOFCs with composite electrolytes. ECS Proceedings Volumes, 1999. 1999(1): p. 244.
    54. Kjerulf-Jensen, N., R. Berg, and F. Poulsen. Proceedings of the Second European Solid Oxide Fuel Cell Forum. 1996. European Fuel Cell Forum.
    55. Sillassen, M., et al., Low‐temperature superionic conductivity in strained yttria‐stabilized zirconia. Advanced Functional Materials, 2010. 20(13): p. 2071-2076.
    56. Fluri, A., et al., In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction. Nature communications, 2016. 7(1): p. 1-9.
    57. Schweiger, S., et al., A microdot multilayer oxide device: let us tune the strain-ionic transport interaction. ACS nano, 2014. 8(5): p. 5032-5048.
    58. Hirschfeld, J. and H. Lustfeld, First-principles study and modeling of strain-dependent ionic migration in ZrO 2. Physical Review B, 2011. 84(22): p. 224308.
    59. Kushima, A. and B. Yildiz, Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? Journal of Materials Chemistry, 2010. 20(23): p. 4809-4819.
    60. Korte, C., et al., Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes–an improved model for nanocrystalline thin films and a review of experimental data. Physical Chemistry Chemical Physics, 2014. 16(44): p. 24575-24591.
    61. Pergolesi, D., et al., Tensile lattice distortion does not affect oxygen transport in yttria-stabilized zirconia–CeO2 heterointerfaces. Acs Nano, 2012. 6(12): p. 10524-10534.
    62. Kilner, J.A., Feel the strain. Nature Materials, 2008. 7(11): p. 838-839.
    63. Aydin, H., et al., Oxygen tracer diffusion along interfaces of strained Y 2 O 3/YSZ multilayers. Physical Chemistry Chemical Physics, 2013. 15(6): p. 1944-1955.
    64. Schichtel, N., et al., Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Physical Chemistry Chemical Physics, 2009. 11(17): p. 3043-3048.
    65. Korte, C., et al., Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatshefte für Chemie-Chemical Monthly, 2009. 140(9): p. 1069-1080.

    無法下載圖示 校內:2026-10-08公開
    校外:2026-10-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE