簡易檢索 / 詳目顯示

研究生: 張翌誠
Chang, Yee-Cheng
論文名稱: Li3Ba2Gd3(MoO4)8:稀土離子螢光粉光致發光特性研究
Synthesis and photo-luminescence properties of rare earth ion doped Li3Ba2Gd3(MoO4)8 phosphors
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 螢光粉
外文關鍵詞: phosphors
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Li3Ba2Gd3(MoO4)8作為主體晶格,分別添加稀土離子Eu3+,Tb3+,Dy3+,Er3+,Sm3+為活化中心,利用高能震動球磨固態反應法進行起始物粉末的混合,以900℃煆燒持溫12小時完成螢光粉體的製備。以X光粉末繞射、掃描式電子顯微鏡、紫外-可見光全反射光譜與光激發光光譜儀進行其結構與發光特性來討論其粉體結構、表面型態、光致發光等特性。
    發射紅光的螢光粉體中,Li3Ba2Gd3(MoO4)8:Eu3+之螢光粉體其發射峰值為f內層軌域躍遷所造成,分別是591nm(5D07F1)和614nm(5D07F2)的特性峰,其中又以5D07F2紅光特性峰較為顯著,強度為商用螢光粉ZnS:Mn2+,Te2+三倍,由發射光譜計算得知其位於色度座標圖的(0.67,0.33),已經達到國際標準紅光的基準。
    發射綠光的螢光粉體中,Li3Ba2Gd2 Tb1(MoO4)8的激發圖譜,可以發現在200至300nm之間,有一寬廣的吸收帶,此為Tb3+離子由4f5d的電子躍遷所造成;此外,Tb3+在350至500nm之間則會有4f內層電子躍遷,而以307nm光源激發得到的放射光譜中以5D47F5電子能階躍遷較強,為一色度座標位於X=0.25,Y=0.58的綠光螢光體。而Li3Ba2Gd2.95Er0.05(MoO4)8其發射圖譜皆在綠光範圍,故可以推測其有較佳的色彩飽和度,為一色度座標位於X=0.232,Y=0.731,故其色純度較Li3Ba2Gd2 Tb1(MoO4)8佳。
    由於稀土離子5s5p外殼層的屏蔽作用,使得4f電子的躍遷不受結晶場的影響,因此大部分三價稀土離子摻雜的螢光體,如Li3Ba2Gd3(MoO4)8:Dy3+和Li3Ba2Gd3(MoO4)8:Sm3+,其放射光譜基本上與自由態的稀土離子相同,並沒有太大的變化。

    The objet of this study is to synthesize Li3Ba2Gd3(MoO4)8 doped with various activators(Eu3+,Tb3+,Dy3+,Er3+,Sm3+), and the raw material had been mechanically activated by grinding in high energy vibromill followed by calcined at temperature of 900℃ for 12 h. By using XRD, SEM, PL spectra, and UV-visable spectra, the characterization of structure, morphology of powders and photo-luminescent properties of phosphors were analized.
    The dominant emission peaks of Li3Ba2Gd3(MoO4)8:Eu3+ phosphor are 5D0→7F1(591nm)、5D0 →7F2(614nm) which are originate from intra-4f transitions of excited state. The intensity of the emission from 5D0 to 7F2 is stronger than 5D0 to 7F1 and three times more than commercial phosphors, ZnS:Mn2+,Te2+ when Eu3+ concentration in x=2.4. The CIE chromaticity coordinates of red emission of the Li3Ba2Gd0.6Eu2.4(MoO4)8 phosphor is (0.67, 0.33) which is just at NTSC system standard red chromaticity.
    There are two regions in the excitation spectra of Li3Ba2Gd2 Tb1(MoO4)8 phosphor;one is assigned from 4f5d transition in 200 to 300 nm, and the others are from intra-4f transitions in 350 to 500 nm. The dominant emission peak of Li3Ba2Gd2Tb1(MoO4)8 phosphor is 5D47F5 under excitation of 307nm. The CIE chromaticity coordinates of green emission of the Li3Ba2Gd2 Tb1(MoO4)8 phosphor is (0.25, 0.58). The the other series of green phosphor is Li3Ba2Gd2.95Er0.05(MoO4)8.Because its emission peaks locates in the light of green region, it has better color rendering index than Li3Ba2Gd2 Tb1(MoO4)8.
    However, the valence electrons are shielded by the 5s and 5p outer electrons, the valance electrons of trivalent rare earth ions are weakly affected by ligand ions in crystals, so the features of optical spectra of the most phosphors doped with trivalent rare earth, such as Li3Ba2Gd3(MoO4)8:Dy3+ and Li3Ba2Gd3(MoO4)8:Sm3+ is similar to those expected for free ions.

    目錄 摘要..........................................................I Abstract.....................................................II 目錄........................................................III 圖目錄.......................................................VI 表目錄.......................................................XI 第一章 緒論....................................................1 1-1前言....................................................1 1-2研究動機與目的..........................................2 第二章 理論基礎與文獻回顧.....................................3 2-1 螢光材料簡介...........................................3 2-1-1 激發源種類與應用.................................5 2-2 固態材料中的光致發光...................................6 2-2-1 本質型發光(intrinsic luminescence)...............6 2-2-2 外質型發光(extrinsic luminescence)...............7 2-2-2-1 非侷限型(unlocalized type)發光材料.......7 2-2-2-2 侷限型(localized type)發光材料...........7 2-3 發光機制簡介...........................................8 2-3-1 發光原理與過程...................................8 2-3-2 組態座標(configuration coordination)...........9 2-3-3 電子-聲子交互作用(electron-phonon interaction)...9 2-3-4 史托克位移(Stoke shift)..........................10 2-4 影響發光效率的因素....................................10 2-4-1 主體晶格(host)..................................10 2-4-2 毒劑現象(poisoning).............................11 2-4-3 濃度淬滅(concentration quenching)...............11 2-4-4 熱淬滅(thermal quenching).......................11 2-5 螢光材料的組成與選擇..................................12 2-6 Li3Ba2Gd3(MoO4)8晶格介紹...............................13 第三章 實驗方法與步驟.......................................23 3-1 實驗流程.............................................23 3-2 化學藥品.............................................23 3-3 成分與結構分析.......................................23 3-3-1 X光繞射分析(X-Ray Diffraction Analysis)........24 3-3-2 掃瞄式電子顯微鏡(Scanning Electron Microscope)分析 3-4 發光性質測定..........................................24 3-4-1螢光光譜儀(Photoluminescene,PL).................24 3-4-2吸收光譜(Absorption Spectrometer)................24 3-4-3色度座標分析(Analysis of C.I.E Chromaticity Diagram) 第四章 結果與討論 4-1 固相反應法合成Li3Ba2Gd3(MoO4)8:Eu3+.......................28 4-1-1摻雜Eu3+濃度對結構影響............................28 4-1-2 SEM表面分析......................................28 4-1-3光譜分析.........................................28 4-1-4 Eu3+摻雜濃度對發光與衰變之影響....................30 4-1-5 熱穩定分析......................................31 4-1-6 色度座標圖......................................32 4-1-7 結論............................................32 4-2固相反應法合成Li3Ba2Gd3(MoO4)8:Tb3+.......................43 4-2-1 摻雜Tb3+濃度對結構影響...........................43 4-2-2 SEM表面分析.....................................43 4-2-3 光譜分析........................................43 4-2-4 還原氣氛對Li3Ba2Gd3(MoO4)8:Tb3+螢光特性的影響......44 4-2-5 Tb3+摻雜濃度對發光之影響.........................44 4-2-6 色度座標圖......................................45 4-2-7 結論............................................45 4-3 固相反應法合成Li3Ba2Gd3(MoO4)8:Er3+.....................56 4-3-1 摻雜Er3+濃度對結構影響..........................56 4-3-2 光譜分析........................................56 4-3-3 Er3+摻雜濃度對發光之影響.........................56 4-3-4 結論............................................57 4-4 固相反應法合成Li3Ba2Gd3(MoO4)8:Dy3+.......................65 4-4-1 摻雜Dy3+濃度對結構影響...........................65 4-4-2光譜分析.........................................65 4-4-3 Dy3+摻雜濃度對發光之影響..........................66 4-4-4色度座標圖.......................................66 4-4-5結論.............................................67 4-5 固相反應法合成Li3Ba2Gd3(MoO4)8:Sm3+.......................77 4-5-1 摻雜Sm3+濃度對結構影響...........................77 4-5-2 光譜分析........................................77 4-5-3 Sm3+摻雜濃度對發光之影響..........................77 4-5-4 色度座標圖......................................78 4-5-5 結論............................................78 第五章 總結論................................................87 5發光特性發析..........................................87 參考文獻.....................................................89 圖目錄 Figure 2-1 Energy levels of trivalent lanthanide ions………………………..14 Figure 2-2 Photoluminescence process………………………………………15 Figure 2-3 Jablonski diagram, Relaxation mechanism for excited state molecules…………………………………………………………………….15 Figure 2-4 Photoluminescence process and configurational coordinate diagram Figure 2-5 Schemes of Stokes shift…………………………………………...17 Figure 2-6 Stokes shift in spectra……………………………………………..18 Figure 2-7 Poisoning effect…………………………………...………………18 Figure 2-8 Thermal quenching effect during the emission process…………...19 Figure 3-1 The floe chart of synthesis of phosphor powders by modified solid state reaction method………………………………………………………….25 Figure 3-2 The fluorescence Spectrometer instrument………………………..26 Figure 3-3 The CIE chromaticity diagram…………………………………….27 Figure 4-1-1 The XRD patterns of Li3Ba2Gd3-x(MoO4)8:Eux calcined at 900oC for 12hr………………………………………………………………………33 Figure 4-1-2 SEM micrographs of Li3Ba2(Gd3-xEux)(MoO4)8 powders calcined at 900oC for 12hr:(a)x=0.07 (b)x=0.4 (c)x=1.8 (d)x=2.6…………………….34 Figure 4-1-3 The excitation spectra of Li3Ba2Gd3-x(MoO4)8:Eu3+ calcined at 900oC for 12hr (λem=614nm)………………………………………………..35 Figure 4-1-4 Absorption spectra of powders of (a) Li3Ba2Gd3(MoO4)8 and (b) Li3Ba2Gd3-x(MoO4)8:Eu3+ calcined at 900oC for 12hr……………………….36 Figure 4-1-5The emission spectra of Li3Ba2Gd3-x(MoO4)8:Eu3+ calcined at 900oC for 12hr (λex=465nm)…………………………………………………37 Figure 4-1-6 The dependence of asymmetry ratio on Eu3+ concentration in Li3Ba2(Gd3-xEux)(MoO4)8 under excitation at 465 nm………………………..38 Figure 4-1-7 The relationship of emission intensity and decay time with Eu3+ concentration in Li3Ba2Gd3-x(MoO4)8 under excitation at 465nm…………….39 Figure 4-1-8 The emission intensity comparison between Li3Ba2Gd3-x(MoO4)8:Eu3+ and ZnS:Mn2+,Te2+………………………………..40 Figure 4-1-9 (a)Temperature dependent relative emission intensity of Li3Ba2Gd3-x(MoO4)8:Eu3+. (b)The emission spectra as a function of temperature of Li3Ba2Gd3-x(MoO4)8:Eu3+………………………………………………….41 Figure 4-1-10 CIE chromaticity diagram showing the color coordinates of Eu-doped Li3Ba2Gd3-x(MoO4)8………………………………………………42 Figure 4-2-1 The XRD patterns of Li3Ba2Gd3-x(MoO4)8:Tbx calcined at 900oC for 12hr……………………………………………………………………….46 Figure 4-2-2 SEM micrographs of Li3Ba2(Gd3-xTbx)(MoO4)8 powders calcined at 900oC for 12hr:(a)x=0.07 (b)x=0.4 (c)x=1.8………………………………47 Figure 4-2-3 The excitation spectra of Li3Ba2Gd3-x(MoO4)8:Tb3+ calcined at 900oC for 12hr (λem=544nm)………………………………………………48 Figure4-2-4 Absorption spectra of Li3Ba2Gd3(MoO4)8:Tb3+ powders calcined at 900oC for 12hr……………………………………………………………….49 Figure 4-2-5 The emission spectra of Li3Ba2Gd3-x(MoO4)8:Tb3+ calcined at 900oC for 12hr (λex=307nm)………………………………………………..50 Figure 4-2-6 Cross relation between two Tb3+ ion…………………………...51 Figure 4-2-7 The relationship of emission intensity with Tb3+ concentration in Li3Ba2Gd3-x(MoO4)8 under excitation at 307 nm……………………………..52 Figure 4-2-8 The role of the 4f75d1 nonradiative transition of the Tb3+ in lattice Figure 4-2-9 Decay curves of 5D47F5 transition for various Tb3+ concentrations in Li3Ba2(Gd3-xTbx)(MoO4)8 under excitation at 307 nm…….54 Figure 4-2-10 CIE chromaticity diagram showing the color coordinates of Tb-doped Li3Ba2Gd3-x(MoO4)8………………………………………………..55 Figure 4-3-1 The XRD patterns of Li3Ba2Gd3-x(MoO4)8:Erx calcined at 900oC for 12hr………………………………………………………..………………58 Figure 4-3-2 The excitation spectra of Li3Ba2Gd3-x(MoO4)8:Er3+ calcined at 900oC for 12hr (λem=551nm)………………………………………………..59 Figure 4-3-3 Absorption spectra of Li3Ba2Gd3-x(MoO4)8:Er3+ powders calcined at 900oC for 12hr……………………………………………………………..60 Figure 4-3-4 The emission spectra of Li3Ba2Gd3-x(MoO4)8:Er3+ calcined at 900oC for 12hr (λex=381nm)…………………………………………………61 Figure 4-3-5 CIE chromaticity diagram showing the color coordinates of Er-doped Li3Ba2Gd3-x(MoO4)8………………………………………………..62 Figure 4-3-6 The relationship of emission intensity with Er3+ concentration in Li3Ba2Gd3-x(MoO4)8 under excitation at 381nm………………………………63 Figure 4-3-7 Cross relation between two Er3+ ion…………………………...64 Figure 4-4-1 The XRD patterns of Li3Ba2Gd3-x(MoO4)8:Dyx calcined at 900oC for 12hr………………………………………………………………………..68 Figure 4-4-2 The excitation spectra of Li3Ba2Gd3-x(MoO4)8:Dy3+ calcined at 900oC for 12hr (λem=574 nm)………………………………………………..69 Figure 4-4-3 Absorption spectra of Li3Ba2Gd3-x(MoO4)8:Dy3+ powders calcined at 900oC for 12hr……………………………………………………………...70 Figure 4-4-4 The emission spectra of Li3Ba2Gd3-x(MoO4)8:Dy3+ calcined at 900oC for 12hr (λex=388nm)…………………………………………………71 Figure 4-4-5 The dependence of asymmetry ratio on Dy3+ concentration in Li3Ba2(Gd3-xDyx)(MoO4)8 under excitation at 388 nm………………………..72 Figure 4-4-6 The relationship of emission intensity with Dy3+ concentration in Li3Ba2Gd3-x(MoO4)8 under excitation at 388nm………………………………73 Figure 4-4-7 Cross relation between two Dy3+ ion………………………..…74 Figure 4-4-8 Decay curves of 4F9/26H13/2 transition for various Dy3+ concentrations in Li3Ba2(Gd3-xEux)(MoO4)8 under excitation at 388 nm……..75 Figure 4-4-9 CIE chromaticity diagram showing the color coordinates of Dy-doped Li3Ba2Gd3-x(MoO4)8………………………………………………..76 Figure 4-5-1 The XRD patterns of Li3Ba2Gd3-x(MoO4)8:Smx calcined at 900oC for 12hr………………………………………………………………………..79 Figure 4-5-2 The excitation spectra of Li3Ba2Gd3-x(MoO4)8:Sm3+ calcined at 900oC for 12hr (λem=605 nm)………………………………………………..80 Figure 4-5-3 Absorption spectra of Li3Ba2Gd3-x(MoO4)8:Sm3+ powders calcined at 900oC for 12hr……………………………………………………………...81 Figure 4-5-4 The emission spectra of Li3Ba2Gd3-x(MoO4)8:Sm3+ calcined at 900oC for 12hr (λex=406nm)…………………………………………………82 Figure 4-5-5 The relationship of emission intensity with Sm3+ concentration in Li3Ba2Gd3-x(MoO4)8 under excitation at 406 nm……………………………..83 Figure 4-5-6 Cross relation between two Sm3+ ion…………………………..84 Figure 4-5-7 Decay curves of 4G5/26H7/2 transition for various Sm3+ concentrations in Li3Ba2(Gd3-xEux)(MoO4)8 under excitation at 406 nm……..85 Figure 4-5-8 CIE chromaticity diagram showing the color coordinates of Sm-doped Li3Ba2Gd3-x(MoO4)8……………………………………………….86 表目錄 Table 2-5-1 The kinds of cations could be used for host lattice………………20 Table 2-5-2 The kinds of complex ions with optical activity could be used for host lattice……………………………………………………………20 Table 2-5-3 The kinds of complex ions without optical activity could be used for host lattice……………………………………………………………21 Table 2-5-4 The kinds of cations could be used as activators………………...22 Table 2-5-5 The kinds of cations could be the killers to form phosphors…….22

    參考文獻
    1. 劉如熹、王健源、石景仁,“白光發光二極體之螢光材料介紹”,光訊 第91期2001年8月,p.30。
    2. 劉如熹、王健源,“白光發光二極體用製作技術”全華科技,(2001)
    3. 莊賦祥,“藍綠光發光二極體”,科學發展349期,(2002)46。
    4. 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”全華科技,(2003)
    5. 蔡慶龍,電機月刊,第十一卷第二期。
    6. 市場報導,LED背光源將慢慢拓展至不同液晶領域;財團法人國家實驗研究院科技政策研究與資訊中心,民95。
    7. 郭長祐,次世代LCD背光元件發展趨勢白光型發光二極體之背光設計兵法;大掾股份有限公司,民95。
    8. S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, J. Electrochem. Soc., 138 (1991) 1509.
    9. S. Itoh, M. Yokoyama, and K. Morimoto, J. Vac. Sci. Technol., A5 (1987) 3430.
    10. L. D. Carlos, V. de Zea Bermudez, and R. A. Sá Ferreira, J. Non-Cryst. Solids, 247 (1999) 203.
    11. P. Guo, F. Zhao, G. Li, F. Liao, S. Tian, and X. Jing, J. Lumin,105 (2003) 21
    12. 楊俊英著,“電子產業用螢光材料之應用調查”,工研院 民國81年。
    13. G.. Blasse, “Handbook on the Physics and Chemistry of Rare Earths” Vol.4, North-Holland (1979)
    14. T. Hoshina, “Luminescence of Rare Earth Ions”, Sony Research Center Rep. (1983).
    15. G. Adachi, “Rare Earths-Their Properties and Applications”, Gihodo (1980) p.173.
    16. D. R. Vij,“Luminescence of solids”,Plenum Press, New York,(1998)
    17. G. Blasse, and B. C. Grabmaier, “Luminescence Material” , Springer-Verlag Telos(1994)p.13.
    18. 李育群,鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國96年。
    19. 林育鋒,硫化物半導體Ba2ZnS3為基質之螢光粉體製備及其光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國95年。
    20. J. R. Lakowicz, “Principle of Fluorescence Spectroscopy-2nd ed”, Kluwer Academic/Plenum Pub, New York, (1999).
    21. P. Atkins, L. Jones, “Chemistry molecules, Matter, and Change” 3rd edition, (1997).
    22. R. C. Ropp, “Luminescence and the Solid State-2nd ed.”, Elsevier.: Amsterdam, (2004).
    23. R. F. Klevtsova, “Crystal structure investigation of ternary molybdates Li3Ba2Gd3(MoO4)8”, Journal of Structural Chemistry,33(1992)443-447.
    24. Mingjun Song, Lizhen Zhang and Guofu Wang,“Growth and spectral properties of Nd3+-doped Li3Ba2Ln3(MoO4) (Ln = La, Gd) crystals”, Journal of Alloys and Compounds, In Press, Corrected Proof, Available online 4 March 2009.
    25. Mingjun Song, Guojian Wang, Lizhen Zhang, Zhoubin Lin, Guofu Wang,“Growth and spectral properties of Yb3+-doped Li3Ba2Y3(MoO4)8 crystal”, ,Journal of Alloys and Compounds,478( 2009) 423-426.
    26. Mingjun Song, Guojian Wang, Lizhen Zhang, Zhoubin Lin, Guofu Wang,“Growth and spectral properties of Nd3+-doped Li3Ba2Y3(MoO4) 8 crystal” ,Journal of Crystal Growth, 308( 2007)208-212.
    27. R.C. Ropp, Design of Phosphors, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, chapter 8(1991).
    28. Aleksander Jablonski (1898-1980): Born in Voskresenovka, Ukraine. Started studying physics at Kharkov University and continued after the 1st World War at Warsaw under S. Pienkowski. He received his PhD in 1930. In 1935 he suggested the famous diagram, commonly known under his name, which makes it possible to explain both the kinetics and spectra of fluorescence, phosphorescence and delayed fluorescence,
    29. R. D. Shaannon,“Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”,Acta Cryst. A32 (1976) 751.
    30. G. Blasse, “On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+ –activated oxides ”, J. Chem. Phys., 45(7)(1966)2356.
    31. F. Shi, J. Meng, Y. Ren and Q. Su, “Structure, luminescence and magnetic properties of AgLnW2O8 (Ln = Eu, Gd, Tb, and Dy) compounds”, J. Phys. Chem. Solids, 59(1998)105.
    32. B. R. Judd, “Hypersensitive transitions in rare-earth ions”, J. Chem. Phys., 44(1966)839.
    33. G. S. Ofelt , “Intensities of Crystal Spectra of Rare-Earth Ions”, J.Chem.Phys.37(1962)511
    34. S. Freed,“Spectra of ions in fields of various symmetry in crystals and solutions”, Rev. Mod. Phys., 14(1942) 105.
    35. B. S. Tsai, Y. H. Chang and Y. C. Chen,“Synthesis amd luminescent properties of MgIn2-xGaxO4:Eu3+ phosphors”Electrochem.Solid-State Lett.,8(7)(2005)H55.
    36. S. Polizzi, M. Battagliarin,, M. Bettinelli, A. Speghini, and G. Gagherazzi, “Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis”J. Mater. Chem. 12 (2002) 742.
    37. W. J. L. Oomen, and A. M. A. van Dongen,“Europium(III) in oxide glasses:Dependence of the emission spectrum upon glass composition” J. Non-Cryst. Solids 111 (1989) 205.
    38. Xiaoming Liu, Cuikun Lin, and Jun Lin,“White light emission from Eu3+ host lattices”, Appl. Phys. Lett. 90(2007)081904.
    39. Chih-Hao Liang, Yee-Cheng Chang, Yee-Shin Chang,“Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5:Eu3+ phosphors”, Appl. Phys. Lett . 93(2008)211902.
    40. J. Garcia Sole, L.E. Bausa and D. Jaque, “An introduction to optical Spectroscopy of Inorganic Solids”, John Wiley & Sons, Ltd, p.189,(2005)
    41. M.J. Weber Phys.Rev.B8,(1993),54.
    42. J. Garcia Sole, L.E. Bausa and D. Jaque, “An introduction to optical Spectroscopy of Inorganic Solids”, John Wiley & Sons, Ltd, p.207,(2005)
    43. G.Blasse and B.C.Grabmaier , “Luminescencnt Materials”, Springer Verlag , Berlin Heidelberg, (1994) , p.100.
    44. G. Blasse, “Handbook on the physics and chemistry of rare earths”, Vol.4, (1979), p.237.
    45. Yu-Chun Li, Yen-Hwei Chang, Yu-Feng Lin,a Yee-Shin Chang, and Yi-Jing Lina,“Green-Emitting Phosphor of LaAlGe2O7:Tb3+ under Near-UV Irradiation” Electrochemical and Solid-State Letters, 9 , (2006) H74-H77
    46. G. Blasse,“Energy transfer in oxidic phosphors”, Philips Res. REP., 24 (1969) 131.
    47. S. Shionoya and W. M. Yen,“Phosphor Handbook”, CRC press (1999).
    48. D. L. Dexter, “A theory of sensitized luminescence in solids”, J. Chem. Phys. 21 (1953)836.
    49. G. Blasse, K. C. Bleijenberg and R. C. Powell, “Luminescence and Energy Transfer” , Springer-Verlag, New York(1980)
    50. R. Schmechel, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, and H. V. Seggern,“Photoluminescence propertities of nanocrystalline Y2O3:Eu3+ in different environments”, Scripta Mater. 44 (2001) 1213.
    51. S. Kubota and T. Endo,“Synthesis and Luminescence Properties of La1–xTbxTa7O19”, J. Electrochem. Soc. 142 (1995), 4269
    52. K.S. Thomas, S. Singh and G.H. Dieke,“Energy Levels of Tb3 + in LaCl3 and Other Chlorides” J. Chem. Phys. 38 (1963), 2180
    53. S. Shionoya and W.M. Yen, Phosphor Handbook, CRC Press, Boca Raton, FL (1999) p. 185.
    54. G. Blasse, Rev. Inorg. Chem. 15 (1983), 319.
    55. D. L. Dexter and J. H. Schulman, J.Chem. Phys.,22 1063 (1954).
    56. A. F. Andreeva and V. A. Ogorodnik, Phys. Status Solidi B, 117,K57 (1983).
    57. 林暉然, “YXInGe2O7:R1-X(R = Eu, Tb, Tm)之螢光特性研究”國立成功大學材料所碩士論文(2006) ,p.71-72
    58. C.M. Nascimento and M.J.V. Bell, “Reverse saturable absorption in Er 3+ doped systems”, J. Non-Cryst. Solids, 348(2004)90.
    59. J.C. Krupa, I. Gerard, P.Martin, J.Alloys Comp.188 (1992)77
    60. H. Choi, C.H. Kim, C.H. Pyun, S.J. Kim, J. Lumin. “82(1999) 25.
    61. Q. Su, Z. pei, L. Chi, H. Zang, F. Zou, “The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission”,J. Alloy Compd.192(1993)25-27
    62. Hongwu Zhang, Xiaoyan Fu, Shuyun Niu, Qin Xin,“Synthesis and luminescent properies of nanosized YVO4:Ln (Ln=Sm,Dy)”,Journal of Alloys and Compounds,457(2008)61-65.
    63. K. Mini Krishna, G. Anoop, and M. K. Jayaraj,“Host Sensitized White Luminescence from ZnGa2O4:Dy3+ phosphor”,Journal of Electrochemical Society, 154(2007)J310-J313.
    64. Jinyong Kuang, Yingliang Liu, Jianxian Zhang,“White light emitting long lasting phosphorescence in Dy3+ doped SrSiO3”,Journal of Solid State Chemistry, 179(2006)266-269.
    65. L. Nagli, D. Bunimovich, O. Gorodetsky and V. Molev, "The luminescence properties of Dy-doped figh silicate glass”, J. Non-cryst. Solids, 217 (1997)208.
    66. H. F. Brito, O. L. Malta, M. C. F. C. Felinto, E. E. S. Teotonio, J. F. S. Menezes, C. F. B. Silva, C. S. Tomiyama, C. A. A. Carvalho,“Luminescence investigation of the Sm(III)-β-diketonates with sulfoxides, phosphine oxides and amides ligands”, Journal of Alloys and Compounds,344(2002)293-297.
    67. G. Blass and G.J.Dirksen,"A simple luminescence experiment suggesting rare earth ion pairing in the fluorite structure”. J. Electrochem. Soc., 127 (4) (1980)978.

    下載圖示 校內:2012-07-14公開
    校外:2014-07-14公開
    QR CODE