簡易檢索 / 詳目顯示

研究生: 陳慧萍
Tan, Huey-Pyng
論文名稱: 2D塗覆與3D積層製造Mg-Ni負極之高溫充放電特性研究
The High Temperature Charge-Discharge Characteristics of 2D Coating and 3D Additive Manufacturing on Mg-Ni Anode Materials
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan -Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 3D 雷射積層鎂鎳合金二次電池高溫充放電
外文關鍵詞: 3D laser additive manufacturing, Magnesium-Nickel alloy, Secondary Battery, High temperature charge-discharge test
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今在選用鋰離子二次電池之負極材料不再是單一碳系材料。漸漸被非碳系取代,如:金屬或合金等材料,具有高能量度及高電容量優勢,能應用在二次電池提升電池效應。目前在學術界已研發不少合金系統負極材料,如:Li-C、Li-Mg、Mg-Si等。本實驗選用Mg-Ni合金作為負極材料,鎂活性較高反應較快,添加惰性元素鎳在鎂基地中減緩反應且能抑制體積膨脹的效應,提升電池循環壽命及安全性。本研究以鎂-鎳合金為研究素材,針對三種不同製程下之各電極結構與組織分析及探討Mg-Ni負極材料在高溫環境下充放電機制。實驗除了探討傳統粉末電極法及熱蒸鍍電極基本物化性質之外,3D電極評估其在高溫下充放電機制與亦導入電化學效應。實驗結果顯示, 3D 雷射積層技術製作具有微奈米級結構電極片。顯微結構具有3D堆疊其形貌凹凸亦有助於體表面積增加,而各界面層接合效應較好可提升電池循環壽命。在充放電室溫高溫測試下,3D電極之循環性與粉末電極相較穩定。光譜FTIR分結果確認3D雷射電極高溫測試後吸收峰值越弱且反應後之產物官能團其他電極少代表3D電極與電解液反應機制相較優異,可證實3D電極適具有高溫環境良好的充放電性能。

    Safety and high capacity properties of Mg based electrodes have been achieved in the past and are widely applied in secondary batteries. In this study, we are able to suppress the volume expansion and improve battery cycle life of magnesium-based electrode by adding nickel to magnesium matrix. The Mg-Ni alloy anode material for electrode was prepared by different process methods: the microstructures and electrochemical characteristics behavior at high temperature of the slurry cast method, thermal evaporation method and 3D femtosecond laser additive manufacturing were studied.3D femtosecond laser additive manufacturing is the most popular in 3D printer techniques. Nano-structure of 3D laser electrode possesses stable metal interface and high energy density used for electrode fabrication. As the results of research show that 3D femtosecond laser electrodes have excellent cycle characteristics. The high temperature charge-discharge of Mg-Ni thin film electrodes provides a large capacity than slurry method due to their low concentration of oxygen and large surface area. Moreover, 3D laser electrode has better electrochemical performance compared to slurry and thin film anode electrode system. FTIR results show the 3D electrode is less functional after high temperature test, representative of the reaction mechanism with the electrolyte is better than another electrode. The results suggested that 3D laser electrode may be useful in high energy storage systems.

    摘要 I 英文摘要 III 誌謝 XIV 總目錄 XVI 表目錄 XIX 圖目錄 XX 第一章 前言 1 1-1 研究背景 1 1-2 研究動機 2 第二章 理論基礎與文獻回顧 4 2-1 鋰離子二次電池及工作原理 4 2-2 鋰離子二次電池之負極材料 4 2-3 鎂基電極材料 5 2-4 鎂-鎳負極材料 6 2-5 不同電極製程 7 2-5-1 混漿塗佈電極製程特性 7 2-5-2 熱蒸鍍薄膜電極製程特性 7 2-5-3 3D雷射積層製造電極特性 8 2-6 高溫充放電機制 9 2-7 研究目的 9 第三章 實驗步驟與方法 13 3-1 實驗流程概述 13 3-2 粉末材料製備 13 3-3 混漿塗佈電極 13 3-4 熱蒸鍍電極製備 14 3-5 3-D飛秒雷射積層電極製備 14 3-6 負極電極微觀組織分析 15 3-6-1 掃描式電子顯微鏡與EDS分析 15 3-6-2 低角度X-ray 繞射分析 15 3-6-3 穿透式電子顯微鏡(TEM)分析 15 3-7 電池組裝 16 3-7-1 充放電測試 16 3-8 電化學特性分析 16 3-8-1 循環伏安(Cyclic Voltammetry, CV)分析 16 3-8-2 電化學阻抗分析 17 3-9 傅立葉轉換紅外線光譜分析 17 第四章 實驗結果與討論 25 4-1 鎂-鎳粉末電極特性 25 4-1-1 鎂-鎳粉末電極顯微結構與元素成份分析 25 4-1-2 鎂-鎳粉末電極充放電循環特性 26 4-1-3 鎂-鎳粉末電極循環伏安分析 27 4-2 熱蒸鍍鎂-鎳薄膜電極特性 27 4-2-1 蒸鍍鎂-鎳薄膜電極顯微結構與元素成份分析 27 4-2-2 蒸鍍鎂-鎳薄膜電極充放電循環特性 28 4-2-3 蒸鍍鎂-鎳薄膜電極循環伏安分析 29 4-3 3-D飛秒雷射積層鎂-鎳電極特性 30 4-3-1 3-D鎂-鎳電極充放電前之微結構 30 4-3-2 3-D鎂-鎳電極顯微結構與元素成份分析 32 4-3-3 3-D鎂-鎳電極充放電循環特性 32 4-3-4 3-D鎂-鎳電極循環伏安分析 33 4-4 不同製程電極特性比較與探討 34 4-4-1 各鎂-鎳電極高溫(55°C、85°C)充放電特性探討 34 4-4-2 低角度X-ray繞射分析與相結構探討 37 4-4-3 電化學阻抗分析 38 4-5 FTIR光學結構分析 39 4-6 3-D鎂-鎳電極充放電機制探討 40 第五章 結論 85 參考文獻 87

    [1] N. J. Dudney. J. B. Bates, G. R. Gruzalski, R. A. Zuhr, A. Choudhury and C. F. Luck, "Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries," Journal of Power Sources, 43 pp.103-110, 1993.
    [2] N. J. Dudney. J. B. Bates, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, Xiao hua Yu, and R. A. Zuhr, "Thin-film rechargeable lithium batteries," Journal of Power Sources 54, pp.58-62, 1995.
    [3] K. Sun, T. S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, "3D printing of inter digitized Li-ion micro battery architectures," Adv Mater, vol. 25, pp.4539-4543, 2013.
    [4] Y. T. Chen, F. Y. Hung, T. S. Lui, J. Z. Hong, "Microstructures and charge discharging properties about selective laser sintering applied to anode of magnesium matrix," pp.1-13, 2016.
    [5] A. Mauger, M. Armand, C. M. Julien, and K. Zaghib, "Challenges and issues facing lithium metal for solid-state rechargeable batteries," Journal of Power Sources, vol. 353, pp.333-342, 2017.
    [6] K. Hiroshi Abe, Kuniaki Tatsumi, Shunichi Higuchi "Performance of lithium ion rechargeable batteries graphite whiskerelectrolyteLiCoO2 rocking-chair system." Journal of Power Sources, vol.54, pp.236-239, 1995.
    [7] S. Megahed, "Lithium-ion rechargeable batteries," Journal of Power Sources, vol.51, pp.79-104, 1994.
    [8] Y. I. Keijiro Sawai, Tsutomu Ohzuku, "Carbon materials for lithium-ion (shuttlecock) cells." Solid State Ionics, vol.69, pp.273-283, 1994.
    [9] X. Xie, S.Wang, K. Kretschmer, and G. Wang, "Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries," J Colloid Interface Sci, vol. 499, pp.17-32, 2017.
    [10] B. M. Yair EinEli, Doron Aurbach, Yaakov Carmeli, and H. Y. S. Luski, "The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition "Electrochemical, vol. 39, pp.2559-2569, 1994.
    [11] K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon, and J. W. Park, "Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries," Journal of Power Sources, vol. 129, pp.270-274, 2004.
    [12] M. J. Lindsay, G. X. Wang, and H. K. Liu, "Al-based anode materials for Li-ion batteries," Journal of Power Sources, vol. 119-121, pp.84-87, 2003.
    [13] F. Y. Hung, T. S. Lui, R. S. Xiao, Y. W. Tseng, and C. H. Wang, "Structural effects and charge-discharge characteristics of Mg-C/Mg-Li alloy thin film materials," Materials Transactions, vol. 52, pp.1127-1131, 2011.
    [14] G. Hapçı Ağaoğlu and G. Orhan, "Elaboration and electrochemical characterization of MgNi hydrogen storage alloy electrodes for Ni/MH batteries," International Journal of Hydrogen Energy, vol. 42, pp.8098-8108, 2017.
    [15] J. Z. Hong, F. Y. Hung, T. S. Lui, "The effect of lithium-rich heat treatment of magnesium-based powder on charge-discharge mechanism," pp.1-5, 2015.
    [16] N. S. Kuan, "Relativistic effects in periodic tables," Anhui Normal University, pp.240-1000, 1991.
    [17] Y. Ding, D. Mu, B. Wu, R. Wang, Z. Zhao, and F. Wu, "Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles," Applied Energy, vol. 195, pp.586-599, 2017.
    [18] J. Matsuda, N. Uchiyama, T. Kanai, K. Harada, and E. Akiba, "Effect of Mg/Ni ratio on microstructure of MgNi films deposited by magnetron sputtering," Journal of Alloys and Compounds, vol.
    [19] N.F. Shinji Noharaa, Shu Guo Zhanga, Hiroshi Inouea, Chiaki Iwakuraa, "Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling MgNi with Ni," Applied Energy, vol.195, pp.586-599, 2017.
    [20] A. Patil, V. Patil, D. Wook Shin, J.W. Choi, D.S. Paik, and S.J. Yoon, "Issue and challenges facing rechargeable thin film lithium batteries," Materials Research Bulletin, vol. 43, pp.1913-1942, 2008.
    [21] T. D. Hatchard, M. N. Obrovac, and J. R. Dahn, "A comparison of the reactions of the SiSn, SiAg, and SiZn binary systems with Li3," Journal of The Electrochemical Society, vol. 153, pp.204-282, 2006.
    [22] T. U. Hiroshi Inoue, Shinji Nohara, Naoya Fujita, Chiaki Iwakura, "Effect of ball-milling on electrochemical and physicochemical characteristics of crystalline Mg2Ni alloy " Electrochemical Acta, pp.2215- 2219, 1997.
    [23] 蕭人瑄,鋰離子二次電池鎂-鎳-碳負極材料微觀組織與充放電特性研究,國立成功大學材料科學及工程學系碩士論文,民國 100 年 6 月。
    [24] L. J. Huang, G. Y. Liang, Z. B. Sun, and D. C. Wu, "Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys," Journal of Power Sources, vol. 160, pp.684-687, 2006.
    [25] E. G. Gamaly, V. Rode, Luther Davies, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics," Physics of Plasmas, vol. 9, pp.949-957, 2002.
    [26] E. G. Gamalya, V. Rodea, V. T. Tikhonchuk, Luther Daviesa, "Electrostatic mechanism of ablation by femtosecond lasers," Applied surface science, pp.699-704, 2002.
    [27] S. Sarbada and Y. C. Shin, "Super hydrophobic contoured surfaces created on metal and polymer using a femtosecond laser," Applied Surface Science, vol. 405, pp.465-475, 2017.
    [28] C. Bala, U. Pattamatta, T. Chan, J. Shi, and K. Meades, "Transection and explantation of intraocular lenses using femtosecond lasers," J Cataract Refract Surg, vol. 43, pp.420-423, 2017.
    [29] S. Wang, Y. Yu, R. Li, G. Feng, Z. Wu, G. Compagnini, "High performance stacked in plane super capacitors and super capacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets," Electrochemical Acta, vol. 241, pp.153-161, 2017.
    [30] B. Nie, H. Huang, S. Bai, and J. Liu, "Femtosecond laser melting and resolidifying of high-temperature powder materials," Applied Physics A, vol. 118, pp.37-41, 2014.
    [31] 洪嘉政,3D 雷射積層與熱蒸鍍薄膜之鎂鎳負極微觀組織與充放電機制之研究,國立成功大學材料科學及工程學系碩士論文,民國 105 年 6 月
    [32] R. A. Guidotti and P. Masset, "Thermally activated (thermal) battery technology, " Journal of Power Sources, vol. 161, pp.1443-1449, 2006.
    [33] C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim, "Fabrication of Electro spinning Derived Carbon Nano fiber Webs for the Anode Material of Lithium-Ion Secondary Batteries," Advanced Functional Materials, vol. 16, pp.2393-2397, 2006.
    [34] P. C. Butler, R. A. Guidotti, and P. J. Masset, "Primary batteries reserve systems | Thermally activated batteries: Lithium," pp.137-140, 2009.
    [35] R. A. Guidotti and P. J. Masset, "Thermally activated (thermal) battery technology, "Journal of Power Sources, vol. 183, pp.388-398, 2008.
    [36] M. S. Balogun, W. Qiu, F. Lyu, Y. Luo, H. Meng, J. Li, "All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode," Nano Energy, vol. 26, pp.446-455, 2016.
    [37] P. Masset and R. A. Guidotti, "Thermal activated (thermal) battery technology," Journal of Power Sources, vol. 164, pp.397-414, 2007.
    [38] M. J. Lee, J. K. Hwang, J. H. Kim, H. S. Lim, Y. K. Sun, K. D. Suh, "Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature," Journal of Power Sources, vol. 305, pp.259-266, 2016.
    [39] S. Mo, P. Lu, F. Ding, Z. Xu, J. Liu, X. Liu, "High-temperature performance of all-solid-state battery assembled with 95 (Li0.7S2-P0.3S2)5 -5Li3PO4 glass electrolyte," Solid State Ionics, vol. 296, pp.37-41, 2016.
    [40] N. Plylahan, M. Kerner, D. H. Lim, Matic, and P. Johansson, "Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application," Electrochemical Acta, vol. 216, pp.24-34, 2016.
    [41] D. J. You, Z. Yin, Y. k. Ahn, S. Cho, H. Kim, D. Shin, "A high-performance polymer composite electrolyte embedded with ionic liquid for all solid lithium based batteries operating at ambient temperature," Journal of Industrial and Engineering Chemistry, 2017.
    [42] C. Shi, J. Dai, X. Shen, L. Peng, C. Li, X. Wang, "A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries," Journal of Membrane Science, vol. 517, pp.91-99, 2016.
    [43] S. S. Zhang, K. Xu, and T. R. Jow, "EIS study on the formation of solid electrolyte interface in Li-ion battery," Electrochemical Acta, vol. 51, pp. 1636- 1640, 2006.
    [44] L. Z. Ouyang, H. Wang, C. H. Peng, M. Q. Zeng, C. Y. Chung, M. Zhu, "Formation of MgCNi3 and Mg–Ni amorphous mixture by mechanical alloying of MgNiC system," Materials Letters, vol. 58, pp. 2203-2206, 2004.
    [45] H. Wang, L. Z. Ouyang, M. Q. Zeng, and M. Zhu, "Direct synthesis of MgCNi3 by mechanical alloying," Scripta Materialia, vol. 50, pp. 1471-1474, 2004.
    [46] B. X. P. Gao, X. Qin, F. Wu, H. Liu, Y. Lan, S.S. Fan, H.T. Yuan, D.Y. Song, P. W. Shen, "Synthesis of carbon nanotubes by catalytic decomposition of methane using LaNi hydrogen storage alloy as a catalyst," Chemical Physics Letters, vol.327, pp.271–276,2000.
    [47] L. Z. Ouyang, C. Y. Chung, H. Wang, and M. Zhu, "Microstructure of Mg-Ni thin film prepared by direct current magnetron sputtering and its properties as a negative electrode," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp.1905-1908, 2003.
    [48] M. S. B. a. C. B. Arnold, "Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification," 2010.
    [49] Q. C. Zhuang, S. G. Sun, S. D. Xu, X. Y. Qiu, and Y. H. Qiang, Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries, In tech Open Access Publisher, pp.482-586, 2012.
    [50] L. wig, J. Cao, Dam, and R. Gremaud, "Opto-mechanical characterization of hydrogen storage properties of MgNi thin film composition spreads," Applied Surface Science, vol.254, pp.682-686, 2007.
    [51] Nayeb. Hashemi and J. Clark, "The MgNi (Magnesium-Nickel) system," Bulletin of alloy phase diagrams, vol. 6, pp.238-244, 1985.
    [52] L. Ouyang, S. Ye, H. Dong, and M. Zhu, "Effect of interfacial free energy on hydriding reaction of MgNi thin films," Applied physics letters, vol. 90, pp.021-917, 2007.
    [53] H. Feufel and F. Sommer, "Thermodynamic investigations of binary liquid and solid CuMg and MgNi alloys and ternary liquid CuMgNi alloys," Journal of alloys and compounds, vol. 224, pp.42-54, 1995.
    [54] K. J. Chen, F. Y. Hung, T. S. Lui, and R. S. Xiao, "Improvement of charge-discharge characteristics of the Mg-Ni powder electrodes at 55° C, "Journal of Nanomaterials, pp.1-4,2013.
    [55] L. J. B, J. J. Katz, "The Infared Spectra of Metal loporphyrins (4000-160cm-1),"Journal of the American. Chemical Society, vol.89, pp.1340–1345, 1967.
    [56] Xu. Zhongyu, Yin. Du lin, "The compatibility of electrolytes with the graphitic negative electrode material in lithium ion batteries," New carbon material,vol.19, pp.241-248, 2004.

    無法下載圖示 校內:2022-07-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE