簡易檢索 / 詳目顯示

研究生: 黃培華
Huang, Pei-Hua
論文名稱: 輕質陶粒砂漿與混凝土砌塊之配比設計、產製與材料特性
Proportion and Mechanical Properties of Lightweight Aggregate Mortar and Concrete Blocks
指導教授: 葉玉祥
Yeh, Yu-Hsiang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 178
中文關鍵詞: 輕質砂漿輕質粒料砂漿配比設計力學性能
外文關鍵詞: Lightweight mortar, lightweight aggregate, mortar mix design, mechanical properties
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以台灣製輕質陶砂取代一般河砂製成輕質砂漿,透過抗壓強度評估其材料性能,比較不同砂灰比、水灰比對砂漿之性能影響。另與研究室開發之預製輕質陶粒混凝土砌塊整合,以抗剪試驗測試砌塊與砂漿之複合效益,以試驗數據生成性能評估公式。
    試驗使用三種不同密度之輕質陶砂,包含300級、500級、700級,其堆積密度分別為513 kg/m3、605 kg/m3、1183 kg/m3,以數學計算及拌合實驗得出不同密度陶砂漿體之砂灰比(體積比)、水灰比(重量比)範圍。最終配比試驗包含7種配比,分別為300級砂漿:使用砂灰比2,水灰比0.4、0.45、0.5共3種;500級砂漿:砂灰比2,水灰比0.45、0.5共2種;700級:砂灰比3,水灰比0.4、0.45共2種。輕質陶粒混凝土砌塊使用1種配比(700-F30-C300)。
    力學試驗包含砂漿抗壓強度試驗及砂漿雙剪試驗。在抗壓性能的表現上,使用300級與500級陶砂對於強度影響不大,700級陶砂能提升約30%的抗壓強度;水灰比在0.45時,3種密度之陶砂砂漿均表現出強度最高,變異性最低之現象。整體而言,輕質砂漿之抗壓強度約為一般水泥砂漿之2~4倍,造成此現象之原因可能為陶砂粒徑分佈偏粗外,球型度也較高,導致水灰比低於水泥砂漿。在抗剪性能上,300級陶砂砂漿之抗剪強度與穩定性最低,700級居中,500級最佳。造成此現象之原因推測為製作試體時之操作造成影響,試體的製作順序為300級、500級、700級,於試驗後觀察試體破壞面並記錄砂漿有效剪切面積,得出對應之有效面積分別為設計值之43.6%、53.4%、58.9%。另外也在試驗過程發現大部分試體之破壞並非如預期地從砂漿與砌塊交界面直接破壞,而是在砌塊先產生斜向裂縫,再延伸至交界面破壞。整體而言,使用輕質砌塊+輕質砂漿之抗剪強度約為紅磚+水泥砂漿的一半。

    The paper presents the performances of lightweight mortar using ceramic sand produced in Taiwan to replace ordinary sand. Evaluate its mechanical properties by testing compressive strength. Compare the effects of different sand-cement ratios and water-cement ratios on the performance of mortar. The study also integrated the prefabricated lightweight ceramsite concrete blocks developed before, and the composite benefits of blocks and mortar by testing shear strength. The test data later were used to generate the performance evaluation formula.
    The test used three different densities of lightweight ceramsite sand, including 300, 500, and 700 grades, with bulk densities of 513 kg/m3, 605 kg/m3, and 1183 kg/m3, respectively. The range of sand-cement ratio (volume ratio) and water-cement ratio (weight ratio) of ceramsite sand mortars with different densities was obtained by mathematical calculation and mixing experiments. The final mix ratio test included 7 mix ratios, 300 grade mortar using 3 mix ratio, 500 grade mortar using 2 mix ratio, 700 grade mortar using 2 mix ratio. Lightweight ceramsite concrete blocks use 1 mix ratio.
    Mechanical tests include mortar compressive strength test and mortar triplet shear test. In terms of compressive performance, the use of 300 grade and 500 grade ceramic sand has little effect on strength, and 700 grade ceramic sand can increase the compressive strength by about 30%; when the water-cement ratio is 0.45, the three densities of ceramic sand mortar all show the highest strength and the lowest variability. Overall, the compressive strength of lightweight mortar is about 2 to 4 times that of ordinary cement mortar. The reason for this phenomenon may be that the particle size distribution of ceramic sand is coarse and the sphericity is high, which resulting lower water-cement ratio than cement mortar. In terms of shear performance, the shear strength and stability of 300 grade ceramic sand mortar are the lowest, 700 grade is in the middle, and 500 grade is the best. The reason for this phenomenon is speculated to be the influence of the operation when making the specimens.The corresponding effective areas were 43.6%, 53.4%, and 58.9% of the design value. In addition, it was found during the test that most of the specimens were not directly destroyed from the interface between the mortar and the block as expected, but first produced oblique cracks in the block and then extended to the interface. Overall, the shear strength of lightweight blocks with lightweight mortar is about half of the strength of bricks with cement mortar.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XIII 1 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 1 1-3 研究對象 2 1-4 研究流程 4 1-5 研究貢獻 6 2 第二章 文獻回顧 7 2-1 配比設計 7 2-1-1 文獻資料 7 2-1-2 相關規範與教材 8 2-2 砂漿性能 9 2-3 砌塊性能 11 2-4 牆體構造性能 12 2-5 小結 18 3 第三章 試驗規劃 19 3-1 研究材料 20 3-2 試驗設備與儀器 22 3-3 試驗方法 24 3-3-1 粒料篩分析試驗 24 3-3-2 砂漿成型實驗 25 3-3-3 砂漿抗壓試驗 27 3-3-4 砌塊抗壓試驗 28 3-3-5 砂漿雙剪試驗 29 3-4 試體規劃 32 3-4-1 試體材料 32 3-4-2 試體尺寸 32 3-4-3 試體編號與數量 33 3-5 砂漿配比設計 36 4 第四章 試驗結果 39 4-1 砌塊抗壓試驗數據分析 39 4-1-1 試驗數據 39 4-1-2 破壞模式 40 4-2 砂漿抗壓試驗數據分析 41 4-2-1 試驗數據 41 4-2-2 單位重-抗壓強度關係 46 4-2-3 配比-抗壓強度關係 47 4-2-4 彈性模數計算 48 4-2-5 破壞模式 48 4-3 砂漿雙剪試驗數據分析 50 4-3-1 試驗數據 50 4-3-2 配比-抗剪強度關係 52 4-3-3 剪切模數計算 52 4-3-4 破壞模式 53 4-4 問題討論 55 4-4-1 彈性模數試驗值與規範建議值 55 4-4-2 剪切模數試驗值與規範建議值比較 57 5 第五章 結論與建議 62 5-1 總結 62 5-2 研究展望 65 6 參考文獻 66 7 附錄 69

    [1] Yang, K.-H., Kim, G.-H., & Choi, Y,-H. (2014). An initial trial mixture proportioning procedure for structural lightweight aggregate concrete. Construction and Building Materials, 55, 431-439. http://dx.doi.org/%2010.1016/j.conbuildmat.2013.11.108
    [2] ASTM C270 Standard Specification for Mortar for Unit Masonry (2019). American Society for Testing and Materials.
    [3] Das, B. M., & Sobhan, K., (2018) Principles of Geotechnical Engineering (9th ed.). SI Edition.
    [4] Gooch, L. J., Masia, M. J., Stewart, M. G., Lam, C. Y. (2023). Statistical assessment of tensile and shear properties of unreinforced clay brick masonry. Construction and Building Materials, 386, 131578. http://dx.doi.org/%2010.1016/j.conbuildmat.2023.131578
    [6] Debnath, P., Dutta, S. C., Mandal, P. (2023). Lateral behaviour of masonry walls with different types of brick bonds, aspect ratio and strengthening measures by polypropylene bands and wire mesh. Structures, 49, 623-639.http://dx.doi.org/10.1016/j.istruc.2023.01.155
    [8] ACI 213R-03 Guide for Structural Lightweight-Aggregate Concrete (2003). American Concrete Institute.
    [11] ACI E-701 Aggregates for Concrete (2007). American Concrete Institute.
    [13] ASTM C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars(2020). American Society for Testing and Materials.
    [16] EN 1052-3 Methods of test for masonry - Part 3: Determination of initial shear strength (2002). Comité Européen de Normalisation.
    [18] ACI 318R Building Code Requirements for Structural Concrete and Commentary (2019) American Concrete Institute.
    [20] ASTM C305 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars(2020). American Society for Testing and Materials.
    [21] ACI 221-98 Report on Alkali-Aggregate Reactivity(2008). American Concrete Institute.
    [23]ASTM C469 Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression (2017). American Society for Testing and Materials.
    [24] EN 1996-1-1: Eurocode 6: Design of masonry structures (2005). Comité Européen de Normalisation.
    [25] ACI 363R-92 Report On High Strength Concrete (2022). American Concrete Institute.
    [5] 周展言(2023)。輕質陶粒混凝土之配比設計與其力學及隔音性能 (未出版之碩士論文)。國立成功大學。
    [7] 羅婷頤(2010)。RC構架內填高型磚牆面內側向加載試驗與分析。國立成功大學。
    [9] CNS 3691結構混凝土用之輕質粒料(1998)。中華民國國家標準。
    [10] CNS 386試驗篩(1984)。中華民國國家標準。
    [12] CNS 1010 水硬性水泥墁料抗壓強度檢驗法(1993)。中華民國國家標準。
    [14] CNS 1232 混凝土圓柱試體抗壓強度檢驗法(1991)。中華民國國家標準。
    [15] CNS 8905 建築用混凝土空心磚(2018)。中華民國國家標準。
    [17] CNS 11297混凝土圓柱式體抗壓強度檢驗法(2002)。中華民國國家標準。
    [19]CNS 14826 隔熱混凝土用輕質粒料(2004)。中華民國國家標準。
    [22] CNS 1176 混凝土坍度試驗法(2003)。中華民國國家標準。
    [26]何家稭(2024)。輕質陶粒混凝土砌塊之機械性能及熱傳導行為與解析 (未出版之碩士論文)。國立成功大學。

    無法下載圖示 校內:2027-08-01公開
    校外:2027-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE