| 研究生: |
王信凱 Wang, Hsin-Kai |
|---|---|
| 論文名稱: |
藉由嵌入平板光子晶體提升發光二極體之發光效率 Enhancing the Extraction Efficiency of a Light-Emitting Device by Inserting a Slab of Photonic Crystal |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 光子晶體 、發光二極體 、光萃取率 、共振腔 |
| 外文關鍵詞: | photonic crystal, Light Emitting Diode, Light extraction efficiency, resonance cavity |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
提升發光二極體(Light Emitting Diode,LED)光萃取效率的數種方法被研究著,其中一種是將二維光子晶體平板(2D photonic crystal slab, 2D PhC slab)結構建立於LED之中。本文藉由平面波展開法(plane wave expansion method)及時域有限差分法(finite difference time domain method)來研究氮化鎵發光二極體(GaN LED)包覆層厚度,光子晶體空氣柱之半徑及深度對LED光萃取率的影響,當深度及半徑參數設定適當大幅提升光萃取效率。 進一步將點缺陷(point defect)置入光子晶體之中形成共振腔(resonance cavity)結構加以比較。被置入的缺陷類型分別為,H1、H2及L3三類共振腔。經置入光子晶體發光二極體與原始發光二極體比較,光萃取率及光強度有明顯增加的現象。
The two dimensional photonic crystal slab with designated defects, namely H1, H2, and L3 type cavities, are investigated aiming at achieving more efficient light extraction. By using the finite–difference time–domain method, effects of finite air-hole radius and depth, and the thickness of cladding layer on the light extraction efficiency are examined. For the selected Gallium Nitrogen blue light emitting LED, values of radius, depth, thickness, that achieved improved photoluminescence, are identified.
[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, Vol.58, No. 20, pp.2059-2062 (1987).
[2] S. John, Strong localization of photons in certain disorded dielectric superlattices, Physical Review Letters, Vol.58, No.20, pp.2486-2489 (1987).
[3] http://ab-initio.mit.edu/photons/tutorial
[4] D. Cassagne, C. Jouanin, and D. Bertho, Hexagonal photonic-band-gap structures
[5] Loncar, T. Doll, J. Vuckovic, and A. Scherer, Design andFabrication of Silicon Photonic Crystal Optical Waveguides, J. Lightwave Tech. 18, pp. 1402-1411 (2000). , Phys. Rev. B, Vol. 53, No.11, pp.7134-7142(1996).
[6] Photonic Band Gap Guidance in Optical Fibers, SCIENCE,Vol. 282 .pp.1478(1998)
[7] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E.Yablonovitch, Light Extraction from Optically Pumped Light-Emitting Diode by Thin-Slab Photonic Crystals, Appl. Phys. Lett. 75, pp. 1036-1038 (1999).
[8] B. Comiskey, J. D. Albert, An electrophoretic ink for all-printed reflective electronic displays, Nature, vol. 394, p. 253
[9] L. P. Biro et al, Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair, Phys. Rev. E, 67, 021907, 2003
[10]O. Painter, Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, J. Opt. Soc. Am. B, 16, 275, 1999
[11]E. Miyai, Quality factor for localized defect modes in a photonic crystal slab upon a low-index dielectric substrate, Opt. Lett., 26, 740, 2001
[12]Han-Youl, Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode, Appl. Phys. Lett., 80, 3883, 2002
[13]K. Hennessy, Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots, Appl. Phys. Lett., 83, 3650,2003.
[14]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals Princeton U. Press, Princeton, N. J., 1995
[15]Hong-Gyu Park, Nondegenerate monopole-mode two-dimensional photonic band gap laser, Phys. Rev. Lett., 79, 3032, 2001
[16]Kartik Srinivasan and Oskar Painter, Momentum space design of high-Q photonic crystal optical cavities, OPTICS EXPRESS, vol.10, p. 671, 2002.
[17]Susumu Noda, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature Vol. 425 2003
[18]S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, J. Salzman, Diamond based photonic crystal microcavities, OPTICS EXPRESS Vol. 14, No. 8(2006)
[19]Wen-Hao Chang, et al., Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities, Phys. Rev. Lett. 96, (2006)
[20]K. Sakoda, ‘Optic Properties of Photonic Crystals,’ (Springer,2001)
[21]K. S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations In Isotropic Media, IEEE Trans. Antennas Propagat. AP-14, 802-807 (1966).
[22]J. B. Berenger, A Perfectly Matched Layer for Absorption of Electromagnetic Waves, J. Comput. Phys. 114, 185-200 (1994).
[23]Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, A perfectlymatched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propagat. 43, 1460-1463 (1995).
[24]S. D. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas Propagat. 44, 1630-1639 (1996).
[25]A. Taflove, Computational Electrodynamics:The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 1995
[26]H. Kitagawa, T. Suto, M. Fujita, Y. Tanaka, T. Asano, Green photoluminescence from GaInN photonic Crystals, A. Physics Express 1 032004, 2008
[27]H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, Enhancement of Light Extraction From Two-Dimensional Photonic Crystal Slab Structures, IEEE J. Sel. Top. Quantum Electron. 8, 2 (2002).
[28]陳光鑫, 林鎮華,光電子學, 全華科技圖書, 2000.
[29]K. Kawano, T. Kitoh, Introduction to Optical Waveguide Analysis : Solving Maxwell's Equation and the Schrödinger Equation, John Wiley.
[30]M. Fujita, Y. Tanaka, and S. Noda, Light Emission From Silicon in Photonic Crystal Nanocavity, IEEE J. Sel. Top. Quantum Electron. VOL. 14, NO. 4, 2008 pp.1090-1097.