簡易檢索 / 詳目顯示

研究生: 陳忠偉
Chen, Jung-Wei
論文名稱: 抬升河川水位與河畔取水對地下水位影響之研究
Impact of raising river water level and pumping near riverbank on the groundwater level
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 河畔取水河川滲漏水平集水管寬口輻射井
外文關鍵詞: large-radial well, pumping near riverbank, river seepage, horizontal collection well
相關次數: 點閱:116下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於台灣近年每逢颱風來襲所夾帶之豪大雨,屢屢造成供水系統之原水濁度飆高,遠超出淨水場可處理能力,因此建立穩定且永續之供水備援系統實刻不容緩。淺層含水層因同時具有降雨、河川與地下水側向補注等來源,以河畔取水形式可於豐水期取得乾淨水源,枯水期可截留部分伏流水,且經由土層之入滲過濾,可降低河川水污染物及細菌濃度,為可行之開發或備援水源方案。
    為評估地下水流數值模式MODFLOW應用於評估現場各項水文變化量之適用性,本研究利用解析模式驗證數值模式之適用性。模式驗證分為兩部分,第一部份為探討河川水位上升對河川滲漏量之影響,主要利用Ferris et al.(1962)解析模式進行比較。第二部分為抽水行為引致河川滲漏量變化之影響評估,分別以Grigoryev(1957)、Hantush(1965)、Wilson(1993)與Hunt(1999)等四種解析模式,評估MODFLOW應用於模擬抽水井河畔取水之適用性,利用Joshi(1988)驗證水平集水管模式。由研究結果顯示解析解與數值解驗證結果良好,表示數值模式可模擬具備各種水文條件之現場情況。
    本研究利用新虎尾溪已設置之橡皮壩設施,評估河川水位抬升對河川滲漏量之影響,分別以河川流量估計法、經驗解析法與數值模擬法等進行分析,結合現場資料、解析解與數值解等研究方法,對區域獨特水文地質特性提出增加河川滲漏之量化研究。由研究結果顯示,利用流量資料與數值解推估之河川滲漏量分別為264.2×104 (m3/y)與170.9×104 (m3/y),利用解析解與數值解推估河川水位上升所增加之河川滲漏量分別為31.6×104 (m3/y)與26.4×104 (m3/y),因此當新虎尾溪河川水位上升2.5m時,可增加河川滲漏量約10.0%至18.5%。
    本研究提出於北彰化快官地區與貓羅溪河畔,設置寬口井進行水源開發。水文地質參數之敏感性分析有助於現場模式驗證,抽水井形式之敏感性分析則可應用於出水方案設計。由研究與設計方案結果顯示,合適方案為於貓羅溪沿岸設計8口單井出水量為7,500CMD之抽水井,井徑為4m之寬口井分兩排交叉佈設,由模擬結果顯示地下水位洩降量符合下限水位標準,洩降影響範圍未擴及700m外之住宅區。
    南彰化水源開發以竹塘地區沿濁水溪北岸,設置寬口輻射井方式進行水源開發,並進行水平集水管形式之敏感性分析。由研究分析結果顯示,建議方案為沿濁水溪北岸設置6口,單井出水量為7,400CMD之4m寬口輻射井,井徑2m之水平集水管由寬口井往外延伸10m,由模擬結果顯示地下水位洩降量符合下限水位標準,洩降影響範圍至600m外之住宅區約0.2至0.3m。

    Taiwan is hit by typhoons along with torrential rains in recent years, the raw water for the water system would usually rise to a level of high turbidity, far beyond the capacity of the water purification station. Therefore, it is of great urgency to establish a steady and sustainable water supply backup system. The shallow aquifer is sourced by rains, rivers, and groundwater side recharge. By pumping near the riverbank, it is able to obtain clean water in wetting season and also intercept part of the groundwater during the drying season. Furthermore, the seepage on the soil stratum as well as the seepage is able to decrease the contamination and bacterial concentration of the water from rivers. Thus, it can be considered as a developable backup water supply program.
    To evaluate the applicability of MODFLOW being used for all hydrological variations on the site, the study makes use of analytical models to verify its applicability. The verification consists of two steps. The first step involves research on the effect of water level rise to the river seepage, by mainly using the analytical mode formulated by Ferris et al. (1962). This step likewise involves the comparison of the results. The second step is to assess the effect of the pumping activity to the river seepage, using four analytical models that were developed by Grigoryev (1957), Hantush (1965), Wilson (1993), and Hunt (1999) to evaluate the applicability of MODFLOW being used for simulating pumping near riverbank. Furthermore, the second step utilizes the analytical mode of Joshi (1988) to verify the horizontal collection well mode. According to the research results, the analytical solution and the numerical solution have shown good verification results. This indicates that the MODFLOW can simulate the on-site situation under all kinds of hydrological conditions.
    The study makes use of rubber dam installations to evaluate the influence of water level rise on river seepage. River flow estimation, experience analytical, and numerical simulation are respectively used for analysis. By combining on-site materials, analytical solution, and numerical solution, as well as other research approaches, a quantification study on river seepage increase for the unique hydrological geology of the region has been conducted. According to the research results, the river seepage amounts estimated from the stream flow data and numerical solution are 2,642 thousand m3/year and 1,709 thousand m3/year respectively. In relation to this, the increased river seepage amounts estimated from the analytical solution and numerical solution are 316 thousand m3/year and 264 thousand m3/year respectively. Thus, it is estimated that, at a 2.5 m of rise of the river water level, the amount of river seepage will be increased from 10.0% to 18.5%.
    The study proposes large wells to be built for water source development in the Kuaiguan area of North Zhanghua and the area along the Maoluo River. To undergo sensitivity analysis for hydrological geology parameters that can help to verify the mode of the site, the corollary process of sensitivity analysis for the pumping well form can be applied in the water supplying program design. Based on the results of the research and design, the project is building 8 pumping wells along the Maoluo River, each with a water yield of 7,500 CMD, cross-distributed in two lines with 4 m of well diameter. The simulation results show that the groundwater drawdown accords with the lower limit standard and the drawdown does not involve residential areas located 700 m away.
    The water source development in South Zhanghua involves building large-radial wells along the north bank of the Zhuoshui River in the Zhutang Area. Moreover, the sensitivity analysis for the horizontal collection well form is undertaken for the water supplying program design. Based on the analysis of the research, the proposal is to build 6 large-radial wells, each with a water yield of 7,400 CMD, 4 m well diameter, with horizontal collection wells 2 m in length reaching 10 m from the wells. The simulation results indicate that the groundwater drawdown is in accordance with the lower limit standard. Furthermore, the drawdown affects the residential areas situated 600 m away between the degrees of 0.2 to 0.3 m.

    目 錄 摘 要 I ABSTRACT III 誌 謝 V 目 錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 3 1.3 研究架構 3 第二章 文獻回顧 6 2.1 河畔取水解析模式相關文獻 6 2.2 河畔取水數值模式相關文獻 8 第三章 理論模式介紹 10 3.1數值模式MODFLOW軟體介紹 10 3.2 河川流量估計法 11 3.3 解析模式介紹 11 3.3.1 Ferris et al. (1962)理論模式介紹 11 3.3.2 Grigoryev (1957)理論模式介紹 13 3.3.3 Hantush (1965)理論模式介紹 14 3.3.4 Wilson (1993)理論模式介紹 15 3.3.5 Hunt (1999)理論模式介紹 15 3.3.6 Joshi (1988)水平井理論模式介紹 16 3.4 解析與數值模式驗證 18 3.4.1 河畔抽水井取水模式驗證 18 3.4.2 河畔水平集水管取水模式驗證 21 第四章 河川滲漏量與地下水位影響之案例應用 24 4.1新虎尾溪河川水位抬升對河川滲漏量分析 24 4.1.1 新虎尾溪研究區域概述 25 4.1.2 河川流量估計法 28 4.1.3 MODFLOW數值模式推估法 28 4.1.4 Ferris et al. (1962)經驗解析法 32 4.1.5 河川水位抬升影響河川滲漏量評估 34 4.2 快官地區河畔取水對河川滲漏量與地下水位影響分析 35 4.2.1 快官地區研究區域概述 35 4.2.2 烏溪與快官地區數值模式建構 36 4.2.3 水文地質參數之敏感性分析 40 4.2.4 快官地區河畔取水最佳設置分析 45 4.3 竹塘地區河畔取水對河川滲漏量與地下水位影響分析 49 4.3.1 竹塘地區研究區域概述 50 4.3.2 濁水溪與竹塘地區數值模式建構 52 4.3.3 水平集水管設置之敏感性分析 55 4.3.4 竹塘地區河畔取水最佳設置分析 62 第五章 成果與建議 65 5.1 研究成果 65 5.2 研究建議 67 參考文獻 68 自 述 74

    1. Azuhan, M. and Ken, R., 2006, Horizontal wells in shallow aquifers: Field experiment and numerical model, Journal of Hydrology, vol.329, lssues 1-2, 98-109.
    2. Bochever, F. M., 1966, Evaluation of well.field yield in alluvial aquifers:The impact of a partially penetrating stream, In Proceedings of VODGEO (Hydrogeolog), no.13, 84-115.
    3. Bouwer, H., 1978, Ground Water Hydrology, New York: McGraw-Hill, 480.
    4. Butler, J. J., V. A. Zlotnik, and M. S. Tsou, 2001, Drawdown and stream depletion produced by pumping in the vicinity of a partially penetrating stream, Ground Water, vol.39, no.5, 651-659.
    5. Chiang, W. H., and W. Kinzelbach, 1998, Processing Modflow for Windows (Version 5.06), Hamburg, Germany.
    6. Chen, J. W., Hsieh, H. H., Yeh, H. F. and Lee, C. H., 2009, The Effect of the Variation of River Water Level on the Estimation Groundwater Recharge in Hsinhuwei River, Taiwan, Environmental Earth Sciences (SCI, WATER RESOURCES, Rank: 32/60, IF:1.026)(DOI:10.1007/ s12665-009-0117-2)
    7. Chen, W. P., and C. H. Lee, 2003, Estimating groundwater recharge from stream flow records, J. of Environmental Geology, vol.44, 257-265.
    8. Chen, X. H., and X. Chen, 2003, Effect of aquifer anisotropic on the migration of lnfiltrated stream water to a pumping well, Journal of Hydrology, vol.8, no.5, 287-293.
    9. Chen, X. H., and Y. Yin, 2004, Semianalytical solution for stream depletion in partially penetrating streams, Ground Water, vol.42, no.1, 92-96.
    10. Chen, X. H., Y. Yin, J. W. Goeke, and R. F. Diffendal Jr, 2005, Vertical monement of water in a High Plains Aquifer induced by a pumping well, Environ Geol, vol.47, 931-941.
    11. Chen, X. H., 2007, Hydrologic connections of astream–aquifer-vegetation zone in south-central Platte River valley, Nebraska, Journal of Hydrology, vol.333, 554-568.
    12. Chen, X. H., M. Burbach, and C. Cheng, 2008, Electrical and hydraulic vertical variability in channel sediments and its effects on streamflow depletion due to groundwater extraction, Journal of Hydrology, vol.352, 250-266.
    13. Dillon, P. J., Miller, M., Fallowfield H., Hutson, J., 2002, The potentiall of riverbank for drinking water supplies in relation to microsystin removeal in brackish aquifers, Journal of Hydrology, vol.266, 209-221.
    14. Ferris. J. G., Knowles. D. B., Brown. R. H., and R. W. Stallman., 1962, Theory of Aquifer Tests, Geological Survey Water-Supply Paper 1536-E, 126-131.
    15. Glover, R. E., and C. G. Balmer, 1954, River depletion from pumping a well near a river, American Geophysical Union Transactions, vol.35, no.3, 468-470.
    16. Grigoryev, V. M., 1957, The effect of streambed siltation on well.field yield in alluvial aquifers, Water Supply and Sanitation, vol.6, 110-118.
    17. Hantush, M. S., 1965, Wells nesr streams with semipervious beds, Journal Geophysical Research, vol.70, no.12, 2829-2838.
    18. Hazen, R. H., 1993, Comparative compressibilities of silicate spinels: anomalous behavior of (Mg, Fe)2SiO4, Science, vol.259, 206-209.
    19. Hunt, B., 1999, Unsteady stream depletion from ground water pumping, Ground Water, vol.37, no.1, 98-102.
    20. Johnson, A. J., 1967, Specific yield. Compilation of specific yields for various materials, U. S. Geol. Survey Water Supply Paper 1662-D, 74.
    21. Jenkins, C. T., 1968, Techniques for computing rate and volume of stream depoetion by well, Ground Water, vol.6, no.2, 37-46.
    22. Joshi, S. D., 1988, Augmentation of well productivity using slant and horizontal wells, Journal of Petroleum Technology, vol. 40, no. 6, 729-739.
    23. Lee, C. H., Chen W. P., and Lee R. H., 2006, Estimation of groundwater recharge using water balance coupled with Base-Flow-Record estimation and Stable-Base-Flow analysis, Environmental Geology, vol.51, no.1, 73-82.
    24. Marshall, T. J., 1957, Permeability and size distribution of pores, Nature, vol.180, 664-665.
    25. Morris, J. B., and R. T. Johnson, 1976, Abstract data types in the Model programming language, ACM SIGPLAN Notices, vol.11, Issue. SI, 36-46.
    26. McDonald, M. G., and A. W. Harbaugh, 1988, A modular three-dimensional finite-difference ground-water glow model, U.S. Geological Survey, Virginia.
    27. Mocida, E., Reilly, T. E., and Pollock, D. V., 1997, Patterns and agedistribution of groundwater flow to streams, Ground Water, vol.35, no.3, 523–537.
    28. Matteo, L. D., and W. Dragoni, 2005, Empirical relationships for estimating stream depletion by a well pumping near a gaining stream, Ground Water, vol.43, no.2, 242-249.
    29. Rastogi, A. K., and Pandey, S. N., 1998, Modeling of artifical recharge basins of different shapes and effect on underlying system, Journal of Hydrologic, vol.3, no.1, 62-68.
    30. Sheperd, J. C., 1994, Training needs analysis model for qualified nurse practitioners, Journal of Nursing Management, vol.2, 181-185.
    31. Schwarzenbach, R. P., et al., 1983, Behavior of organic compounds during infiltration of river water to groundwater: Field studies. Environmental Scientific Technology, vol.17, 472-479.
    32. Sontheimer, H., 1980, Experience with riverbank filtrateion along the Rhine River. Journal of American Water Works Association, 386-390.
    33. Sophocleous, M. A., A. Koussis, J. L. Martin, and S. P. Perkins, 1995, Evaluation of simplified stream.aquifer depletion models for water rights administration, Ground Water, vol.33, no.4, 579-588.
    34. Theis, C. V., 1941, The effect of a well on the flow of a nearby stream, American Geophysical Union Transactions, vol.22, no.3, 734-738.
    35. Wilson, J. L., 1993, Induced infiltration in aquifer with ambient flow, Water Resources Research, vol.29, no.10, 3503-3512.
    36. Yates, M. V., Yates, S. R., Wagner, J., Gerba, C. P., 1987, Modeling virus surviveal and transport in the subsurface, Journal of Contaminant Hydrology 1, 329-345.
    37. Zlotink, V. A., and Huang, H., 2001, Effect of shallow penetration and streambed sediments on aquifer response to stream stage fluctuations, Ground Water, vol.37, no.4, 599-605.
    38. 丁澈士、柯亭帆、吳峰誼,1996,應用變水頭實驗及推估公式對河床透水係數之分析,臺灣水利,第44卷,第1期,第26-35頁。
    39. 丁澈士、黃信恩,2003,屏東平原地下水人工補注水資源優化管理之可行性研究-以林邊溪流域為例,臺灣水利,第51卷,第2期,第54-61頁。
    40. 丁澈士、簡明克,2004,補注入滲動態之試驗研究,農業工程學報,第50卷,第4期,第51-61頁。
    41. 王文烈、黃瑞鴻、王勝雄,2000,水平開發井之應用研究,鑛冶,第44卷,第2期,第29-39頁。
    42. 王文烈,2003,水平井完井工程與注/產氣能力評估及應用,探採研究彙報,第25卷,第487-493頁。
    43. 中央地質調查所,1997,以集水廊道開發水資源之可行性研究。
    44. 中央地質調查所全球資訊網站,2006,http://www.moeacgs.gov.tw/。
    45. 台灣省水利處,1986,新虎尾溪治理規劃報告。
    46. 江崇榮、賴典章、黃智昭、賴慈華、陳利貞,1996,濁水溪沖積扇之水文地質與地下水系統概念模型,濁水溪沖積扇地下水及水文地質研討會論文集,第127-143頁。
    47. 吳沂全、吳健一、吳世雄,1994,水平井油氣生產能力分析,石油鑽採工程,第35卷,第8-25頁。
    48. 呂勁,1993,水平井穩態產油量解析公式及討論,石油探勘與開發,第20卷,第135-140頁。
    49. 李士畦,2001,替代水資源,土木技術,第4卷,第7期,第81-87頁。
    50. 李振誥、陳尉平、李如晃,2002,應用基流資料估計法推估臺灣地下水補注量,臺灣水利,第50卷,第1期,第69-80頁。
    51. 徐年盛,2000,地下集水廊道出水量估算數值模式之建立,經濟部水資源局委託計畫,國立台灣大學土木工程學系。
    52. 高華聲、陳瑞昇、彭瑞國、謝勝彥,2001,水力傳導係數、湖水深度及地下水深度對人工湖補注地下水之影響,台灣水利,第49卷,第2期,第46-54頁。
    53. 許清荃,2000,濁水溪沖積扇多層地下水調配與管理之研究,國立成功大學資源工程所碩士論文,第23-36頁。
    54. 許少華、黃文圻、林時猷,2002,以河川集流管開採河川伏流水量之評估方法探討,農業工程學報,第48卷,第1期,第39-51頁。
    55. 曹以松,1989,地下水,中國土木水利工程學會。
    56. 陳忠偉、李振誥、曾鈞敏、阮香蘭,2002a,濁水溪沖積扇安全出水量與合適水位之研究,第十三屆水利工程研討會論文集,第N-31~37頁。
    57. 陳忠偉、潘文健、李振誥,2002b,濁水溪沖積扇與屏東平原地下水合適出水量之研究,台灣水利,第50卷,第3期,第70-82頁。
    58. 陳忠偉、李振誥、溫志超、龔文瑞,2004,雲林沿海地區地下水水質鹽化數值模擬,第一屆資源工程研討會論文集,第739-746頁。
    59. 陳忠偉、李振誥、溫志超、黃紹揚,2005,新虎尾溪河川補注地下水量評估,第十一屆大地工程研討會論文集,第J04-1~8頁。
    60. 陳進發、李振誥、陳尉平,1999,應用未飽和層水平衡理論估計彰化地區地下水補注量之研究,臺灣水利,第47卷,第1期,第54-66頁。
    61. 陳尉平、李振誥、陳進發,2000,由河川資料之流量歷線估計中部地區之地下水補注量,礦冶,第44卷,第3期,第97-110頁,2000。
    62. 經濟部水利署網站,2006,網址: http://gweb.wra.gov.tw/wrweb/。
    63. 農林航空測量所,1989,國家數值地形模型(Digital Terrain Model)。
    64. 溫志超,2004,新虎尾溪攔河堰豐水期抬高水位入滲補注分析(I),經濟部水利署補助計畫。
    65. 溫志超,2005,新虎尾溪攔河堰豐水期抬高水位入滲補注分析(II),經濟部水利署補助計畫。
    66. 溫志超,2008,竹塘淨水場(新設)水源開發試驗及分析,台灣自來水公司第十一區管理處委託計畫,國立雲林科技大學水土資源與防災科技研究中心。
    67. 劉振宇,2007,金門地下水資源調查分析,經濟部水利署委辦計畫,國立台灣大學生物環境系統工程學系。
    68. 謝壎煌、陳忠偉、李振誥,2007a,河畔地區地下水之水量水質分析,自來水會刊,第26卷,第4期,第1-10頁。
    69. 謝壎煌、陳忠偉、蘇清林、李振誥,2007b,河畔取水引致河川滲漏量之研究,農業工程學報,第53卷,第4期,第21-34頁。
    70. 謝壎煌、陳忠偉、葉信富、李振誥,2007c,應用河川水位變化評估新虎尾溪地下水補注量之研究,農業工程學報,第53卷,第2期,第50-60頁。
    71. 謝壎煌、陳忠偉、梁勝淵、李振誥,2007d,單一水平井於河畔取水效益之研究,自來水會刊,第26卷,第4期,pp.1-8。
    72. 謝壎煌、陳忠偉、李振誥,2008,河畔水源開發方案之數值模式評估,自來水會刊,第27卷,第1期,pp.1-10。
    73. 蔣廷學,2000,多分之穩態水平井產能研究,特種油氣藏,第7卷,第3期,第14-17頁。
    74. 竇宏恩,1996,預測水準井產能的一種新方法,石油鑽採工藝,第18卷,第1期,第76-81頁。

    下載圖示 校內:立即公開
    校外:2009-10-09公開
    QR CODE