簡易檢索 / 詳目顯示

研究生: 胡浩晟
Hu, Hao-Cheng
論文名稱: 距離可調適型彈性光網路中共享備用路徑保護與頻譜重組之頻譜使用量最小化
Spectrum Usage Minimization for Shared Backup Path Protection and Spectrum Reconfiguration in Distance Adaptive Elastic Optical Networks
指導教授: 許靜芳
Hsu, Ching-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 56
中文關鍵詞: 彈性光網路繞徑調變與頻譜配置問題共享備用路徑保護重組
外文關鍵詞: Elastic optical networks (EONs), Routing,modulation and spectrum assignment (RMSA), Shared backup path protection (SBPP), Reconfiguration
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在彈性光網路中,保護之於恢復是一個相當重要的議題,除了一般在進行資料傳輸的工作路徑,還必須去執行繞徑調變與頻譜配置找出備用路徑,在保護機制中,共享備用路徑保護很常被討論,共享備用路徑保護使得備用路徑之間可以共用頻譜資源達到降低頻率槽使用量,而頻譜使用量有限,所以通常會直接影響到頻寬阻斷機率。
    對於繞徑調變與頻譜配置來說,許多試探式演算法都去是以最短路徑或是最少節點數路徑為主,因而忽略掉需要頻率槽的數量及調變最大傳輸距離限制之間的平衡,因此,我們提出了一個共享備用路徑保護的演算法,名為最低權重優先集最短路徑演算法,去優先找最少節點數路徑並檢查其是否符合目前最高階調變最大傳輸距離,再考慮是否用需要被其他路徑取代,因而降低頻率槽的消耗量,另外還有嘗試去預先計算所有來源目的的所有小於最低調變方式的最大傳輸距離路徑,藉此去找出最少使用量的解,叫做最少使用量演算法。
    此外,重組機制可以使頻譜資源配置狀況更整齊滑順,重新配置備用路徑可以降低碎裂問題及增加共享度,因此,我們提出共同鄰近及子路徑重組演算法去改善一些考慮共用路徑中時的缺失,節省資源消耗量。
    數據結果顯示我們的演算法與比較的方法在頻寬阻斷機率有改善,頻譜使用率與執行時間都比較低,以及在重組的部分失敗機率也較低,並且探討在不同規模拓樸中不同方式的比較,以路徑長與最大傳輸距離選擇調變方式,還有不同批次量觸發重組的比較,以及碎裂程度的計算。

    Protection is an important issue of resilience in elastic optical networks (EONs). Not only for working paths, but we have to do the routing, modulation and spectrum assignment (RMSA) for backup paths. In protection scheme, shared backup path protection (SBPP) is usually discussed now. SBPP allows backup paths share spectrum resource to reduce the used frequency slots. Spectrum usage critically effects bandwidth blocking probability (BBP) due to the limited resource in spectrum. For this reason, we aim at minimizing spectrum usage as our objective.
    For the RMSA issue, many heuristic algorithms pursue the shortest path or minimum-hopped path and neglect the balance between number of required frequency slots and maximum transmission distance of modulation. Therefore, we propose a RMSA algorithm named lowest cost first and shortest path algorithm (LCF) to find the minimum-hopped path and check if it can meet the constraint of maximum transmission distance. So that the total consumption of frequency slots can be reduced. Another enhanced approach named minimum usage algorithm (MU) is to pre-calculate all paths for each source-destination pair so that the solution with minimum usage can be determined. In addition, reconfiguration can make spectrum resource smooth. Backup paths are re-allocated to reduce fragmentation problems and increase shareability. Thus, we also propose joint neighbor and sub- path reconfiguration algorithm (JNS) to improve a lack of consideration of shareable paths, saving frequency slot consumption.
    Simulation results show that proposed algorithms achieve better BBP performance and spectrum utilization with significant reduction in execution time and reconfiguration failure as compared with previous work. Also, we demonstrate and discuss fragmentation ratio, the effect of topology scale and batch size of reconfiguration, and considerable modulation formats in different topologies.

    摘要 I Abstract III 致謝 V Nomenclature VI Content VII List of Figures IX List of Tables XI 1. INTRODUCTION 1 2. BACKGROUND 4 2.1. Elastic Optical Networks (EONs) 4 2.1.1. OFDM Technology 4 2.1.2. Modulation Format 5 2.1.3. Dynamic Routing, Modulation and Spectrum Assignment (RMSA) 6 2.2. Shared Backup Path Protection (SBPP) 7 2.3. Reconfiguration 9 2.4. Resource Management Model 10 3. RELATED WORK 11 3.1. RMSA 11 3.2. Protection Path-Based Spectrum Defragmentation 12 3.2.1. Defragmentation with Sequentially Releasing and Re-Establishing Protection Lightpaths (SR-D) 12 3.2.2. Defragmentation with Jointly Releasing and Re-Establishing Protection Lightpaths (JR-D) 13 4. PROPOSED SCHEME 15 4.1. Motivation 17 4.2. Lowest Cost First and Shortest Path Algorithm (LCF) 18 4.2.1. RMSA for Working Paths in LCF 18 4.2.2. RMSA for Backup Paths in LCF 22 4.3. Minimum Usage Algorithm (MU) 27 4.3.1. RMSA for Working Paths in MU 28 4.3.2. RMSA for Backup Paths in MU 30 4.4. Joint Neighbor and Sub- Path Reconfiguration Algorithm (JNS) 33 4.5. Time Complexity 37 5. PERFORMANCE EVALUATION 40 5.1. Parameter Settings 40 5.2. Performance Metrics 41 5.3. Simulation Results 42 5.3.1. Considerable Modulation Formats in Different Topologies 42 5.3.2. Performance of Proposed Scheme 45 6. CONCLUSION 54 Reference 55

    [1] Masahiko Jinno, Hidehiko Takara, Bartlomiej Kozicki, Yukio Tsukishima, Yoshiaki Sone and Shinji Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Communications Magazine, vol. 47, no. 11, Nov. 2009, pp. 66-73.
    [2] Masahiko Jinno, Bartlomiej Kozicki, Hidehiko Takara, Atsushi Watanabe, Yoshiaki Sone, Takafumi Tanaka and Akira Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Communications Magazine, vol. 48, no. 8, Aug. 2010, pp. 138-145.
    [3] Bijoy Chand Chatterjee, Nityananda Sarma and Eiji Oki, “Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial,” IEEE Communications Surveys & Tutorials, vol. 17, no. 3, May 2015, pp. 1776-1800.
    [4] Xin Wan, Nan Hua and Xiaoping Zheng, “Dynamic Routing and Spectrum Assignment in Spectrum-Flexible Transparent Optical Networks,” IEEE/OSA Journal of Optical Communications and Networking, vol. 4, no. 8, Aug. 2012, pp. 603-613.
    [5] Roza Goscien, Krzysztof Walkowiak, Miroslaw Klinkowski and Jacek Rak, “Protection in Elastic Optical Networks,” IEEE Network, vol. 29, no. 6, Nov.-Dec. 2015, pp. 88-96.
    [6] Y. Sone, A. Watanabe, W. Imajuku, Y. Tsukishima, B. Kozicki, H. Takara, and M. Jinno, “Bandwidth Squeezed Restoration in Spectrum-Sliced Elastic Optical Path Networks (SLICE),” IEEE/OSA Journal of Optical Communications and Networking, vol. 3, no. 3, Feb. 2011, pp. 223-233.
    [7] Liu Yang, Hua Nan, Zheng Xiaoping, Zhang Hanyi and Zhou Bingkun, “Polynomial-time Adaptive Routing Algorithm Based on Spectrum Scan in Dynamic Flexible Optical Networks,” China Communications, vol. 10, no. 4, Apr. 2013, pp.49-58.
    [8] Chao Wang, Gangxiang Shen and Limei Peng, “Protection Lightpath-Based Hitless Spectrum Defragmentation for Distance Adaptive Elastic Optical Networks,” Optics Express, vol. 24, no. 5, Mar. 2016, pp. 4497 - 4511.
    [9] Bowen Chen, Jie Zhang, Yongli Zhao, Jason P. Jue, Shanguo Huang and Wanyi Gu, “Minimizing Spectrum Usage for Shared-Path Protection with Joint Failure Probability Constraint in Flexible Bandwidth Optical Networks,” 2014 IEEE International Conference on Communications (ICC), Jun. 2014, pp. 3365 - 3370.
    [10] Xiaoliang Chen, Shilin Zhu, Liu Jiang, and Zuqing Zhu, “On Spectrum Efficient Failure-Independent Path Protection p-Cycle Design in Elastic Optical Networks,” Journal of Lightwave Technology, vol. 33, no. 17, Jul. 2015, pp. 3719 - 3729.
    [11] Xiaoliang Chen, Massimo Tornatore, Shilin Zhu, Fan Ji, Wenshuang Zhou, Cen Chen, Daoyun Hu, Liu Jiang and Zuqing Zhu, “Flexible Availability-Aware Differentiated Protection in Software-Defined Elastic Optical Networks,” Journal of Lightwave Technology, vol. 33, no. 18, Jul. 2015, pp. 3872 - 3882.
    [12] Menglin Liu, Massimo Tornatore, and Biswanath Mukherjee, “Survivable Traffic Grooming in Elastic Optical Networks—Shared Protection,” Journal of Lightwave Technology, vol. 31, no. 6, Dec. 2012, pp. 903 - 909.
    [13] Paul A. Fishwick, “SimPack: getting started with simulation programming in C and C++,” Proceedings of the 24th conference on Winter simulation, Dec. 1992, pp. 154-162.
    [14] Zuqing Zhu, Wei Lu, Liang Zhang and Nirwan Ansari, “Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing,” Journal of Lightwave Technology, vol. 31, no. 1, Nov. 2012, pp. 15-22.

    無法下載圖示 校內:2018-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE