簡易檢索 / 詳目顯示

研究生: 呂侑陞
Lu, Yu-Sheng
論文名稱: 在感知網路下基於接收訊號強度為基礎的雙模式室內位置感知演算法
A Dual-Mode Indoor Location-Aware Algorithm Based on Received Signal Strength Indicator for Sensor Networks
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 95
中文關鍵詞: 訊號強度訊號衰減指數室內定位感知網路
外文關鍵詞: RSSI, Path Loss Exponent, Indoor, Position, sensor networks
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著Internet Of Things(IOT)技術快速的發展,位置感知技術被大量應於日常生活中各種智慧化的服務,因此位置感知技術扮著關鍵技術的角色。本論文著重於室內環境的位置感知技術。透過佈建在環境中之感測網路平台,位置感知技術可以隨時將感測到的資料,透過環境所建置的任何網路傳送到伺服器供人和其他程序使用,藉由進一步的處理與分析,讓使用者可以在不同的環境下,透過不同的網路與通訊環境,隨時隨地享受個人化及貼心的應用與服務。以室內定位來說由於使用Global Position System(GPS)時有Line-Of-Sight(LOS)的限制,所以不適用於室內環境定位。本論文以成本低不用任何額外硬體Received Signal Strength Indicator(RSSI)的定位方式為基礎,利用接收端所接收到的RSSI值來估算與傳送端的距離,由於室內環境中的擺設非常複雜會造成無線訊號的衰減,同時也會造成RSSI定位方法估算待測物座標的誤差。所以我們提出一個雙模式的室內感知演算法,根據bind node處於靜置時的狀態或是處於動態時的tracking狀態下會自動切換成Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning Algorithm與Environment-Assisted Indoor Wireless Sensor Position Tracking Algorithm。並經由實驗可以證實不論blind node處於靜置時的定位或是blind node是處於動態時的tracking狀態下都能達到定位誤差小於2公尺。在即使處在於不利於RF傳輸的環境下,定位誤差也可以控制在2.21公尺左右。由此可以證明本論文提出的演算法可以在低成本的前提下提供更精確的定位服務。

    Rapid advances in theInternet of Things (IOT), have led to the pervasive use of location-aware technologies in daily life for many intelligent services, explaining why they are a major component of IOT. This thesis focuses on use of location-aware technologies in an in-door environment. Distributing sensor network platforms throughout the surrounding environment allows location-aware technologies transfer the gathered data instantly, to the server or other processes for usage via any network setup in the surroundings. By adding data processing and data analysis, users can enjoy personalized applications and services anytime anywhere, through various networks and communication environments as well as in different surrounding environments. Using Global Position System (GPS) in-doors may have Line-of-Sight (LOS) limitations at certain times, making it unsuitable for positioning of in-door surroundings. This work uses Received Signal Strength Indicator (RSSI) positioning as the basis method, owing to its low-cost and no requirement for additional hardware. Also, the distance between the receiver and transmitter can be calculated by using the RSSI value received by the receiver.Owing to complex in-door obstructions, wireless signal attenuation may occur, subsequently causing errors in the RSSI positioning method when calculating the object coordinates. Therefore, this work develops a Dual-Mode Indoor Location-Aware algorithm, which interchanges the positioning algorithm between the Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning Algorithm and Environment-Assisted Indoor Wireless Sensor Position Tracking Algorithm, according to whether the blind node is static or in motion. Experimental results indicate regardless of whether blind nodes are static or in motion, the positioning deviation is less than 2 meters. Even when using surroundings that are inconducive to RF transmission, the positioning deviation can be controlled within 2.21 meters. Results of this thesis demonstrate that the proposed algorithm performs better than other positioning algorithm in terms of positioning accuracy and low cost.

    Abstract............................................... 4 Chapter 1 Introduction................................. 11 Chapter 2 Related works................................ 14 2.1 Location-Aware Technology....................... 14 2.2 Trilateration and Multilateration............... 18 2.3IEEE 802.15.4/ZigBee............................. 23 2.4 Sensor Hardware................................. 25 Chapter 3. Propagation Path Loss Model................. 28 3.1 Free Space Propagation Model.................... 28 3.2 Log-Distance Path Loss Model.................... 31 3.3 Log-normal Shadowing............................ 33 3.4 Log –Normal Shadowing Experiment............... 36 3.4.1 Actual Measurement Experiments in a Corridor Environment............................................ 36 3.4.2 Actual Measurement Experiments of T-R Transmission with a Barrier............................ 38 Chapter 4 Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning Algorithm........................... 44 4.1 position system structure....................... 44 4.2 Path Loss Exponent Estimation Algorithm......... 46 4.3 Experiment and Result........................... 50 4.4 Experiment Parameter............................ 52 4.5 Results and Discussion.......................... 53 Chapter 5. Environment-Assisted Indoor Wireless Sensor Position Tracking Algorithm............................ 59 5.1 Collection of Obstruction Information Sub-Algorithm.......................................... 63 5.2 Construction of Environmental Information Sub-Algorithm.......................................... 66 5.3Convex Hull Position Algorithm................... 69 5.4Test Bed Experiment.............................. 75 5.5 Results......................................... 78 Chapter 6 Conclusion................................... 86 References............................................. 88

    REFERENCES
    [1] Y. M. Huang, P. S. Chiu, T. C. Liu, and T. S. Chen, “The design and implementation of a meaningful learning-based evaluation method for ubiquitous learning,” Computer & Education, vol. 57, No.4, pp. 2291–2302, 2011.
    [2] Y. M. Huang, Y. M. Huang, S. H. Huang, and Y. T. Lin “A ubiquitous English vocabulary learning system: Evidence of active/passive attitudes vs. usefulness/ease-of-use,” Computer & Education, vol. 58,No.1, pp. 273–282, 2012.
    [3] Y. M. Huang, and T. T. Wu, “A systematic approach for learner group composition utilizing u-learning portfolio,” Educational Technology & Society, vol. 14,No.3, pp. 102–117, 2011.
    [4] Y. M. Huang, Y. H. Kuo, Y. T. Lin, and S. C. Cheng, “Toward Interactive Mobile Synchronous Learning Environment with Context-awareness Service,” Computers & Education, vol. 51,No.3, pp. 1205–1226, 2008.
    [5] Y. M. Huang, Y. T. Lin, and S. C. Cheng, “Effectiveness of a mobile plant learning system in a science curriculum in Taiwanese elementary education,” Computers & Education, vol. 54,No.1, pp. 47-58, 2010.
    [6] C. F. Lai, H. C. Chao, and Y. M. Huang,” Adaptive Context-Aware Services and Novel Handover Scheme for Smart Ubiquitous Communication System”, Wireless Personal Communications, Vol. 51, No. 1, pp 109–120, 2009
    [7] C. F. Lai, Y. M. Huang, and H. C. Chao,” A Context-aware Multi-model Remote Controller for Electronic Home Devices,” Journal of Supercomputing, Vol. 54, No. 1, pp. 43-60, 2010.
    [8] Y. S. Lu, C. F. Lai, C. C. Hu, Y. M. Huang, and X. H. Ge, “Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning,” KSII Transactions on Internet and Information Systems, Vol. 4, No. 3, pp 243-257, 2010.
    [9] Y. S. Lu, C. F. Lai, C. C. Hu, H. C. Chao, and Y. M. Huang, “Power-aware DVB-H mobile TV system on heterogeneous multi-core platform,” EURASIP Journal on Wireless Communications and Networking, vol. 2010, No. 812356, pp. 1–10, 2010.
    [10] C. F. Lai, S. Y. Chang, H. C. Chao, and Y. M. Huang, “Detection of Cognitive Injured Body Region Using Multiple Triaxial Accelerometers for Elderly Falling,” IEEE Sensor Journal , Vol.11, No.3, pp. 763–770 ,2011.
    [11] C.F. Lai, Y. M. Huang, and H. C. Chao, “DLNA-based Multimedia Sharing System for OSGI Framework with Extension to P2P Network,” IEEE Systems Journal, Vol. 4, No. 2, pp 262-270, 2010.
    [12] C. F. Lai, Y. M. Huang, J. H. Park and H. C. Chao,” Adaptive Body Posture Analysis Using Collaborative Multi-Sensors for Elderly Falling Detection,” IEEE Intelligent Systems, Vol. 24, No. 6, pp 20-30, 2010
    [13] P. Enge and P. Misra, “Special Issue on Global Positioning System,” Proceedings of the IEEE, Vol. 87, No. 1, pp. 3-15, 1999.
    [14] R. Stoleru, H. Tian, and J. A. Stankovic, “Walking GPS: A Practical Solution for Localization in Manually Deployed Wireless Sensor Networks,” in Proc. of the IEEE Int’ Conf. on Local Computer Networks, pp.480-489, 2004.
    [15] K. Pahlavan, X. Li, and J. P. Make, “Indoor Geolocation Science and Technology,” IEEE Communication Magazine, Vol. 40, No.2, pp. 112-118, 2002.
    [16] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based Wireless Location: Challenges Faced in Developing Techniques for Accurate Wireless Location Information,” IEEE Signal Processing Magazine, Vol. 22, No. 4, pp. 24-40, 2005.
    [17] P. Prasithsangaree, P. Krishnamurthy, and P. K. Chrysanthis, “On Indoor Position Location with Wireless LANs,” In Proc. of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 2, pp. 720 -724, 2002.
    [18] M. O. Sunay and I. Tekin, “Mobile Location Tracking in DS CDMA Networks Using Forward Link Time Difference of Arrival and Its Application to Zone-Based Billing,” In Proc. of GLOBECOM, Vol. 1A, pp. 143-147 , 1999.
    [19] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, “Global Positioning System:Theory and Practice,” Baker & Taylor Books, 1994.
    [20] J. A. Tauber, “Indoor Location Systems for Pervasive Computing,” Area Exam Report, Massa-chusetts Institute of Technology, 2002.
    [21] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-Based User Location and Tracking System,” In Proc. of IEEE INFOCOM, Vol. 2, pp. 775-784, 2000.
    [22] F. Lassabe, P. Canalda, P. Chatonnay, F. Spies, and O. Baala, “A Friis-based Calibrated Model for WiFi Terminals Positioning,” In Proc. of the Sixth IEEE International Symposium on a WoWMoM, pp. 382-387, 2005.
    [23] C. Alippi and G. Vanini, “A RSSI-based and Calibrated Localization Technique for Wireless Sensor Networks,” In Proc. of the Fourth Annual IEEE International Conference on PerCom Workshops, 2006.
    [24] X. Li, “RSS-based Location Estimation with Unknown Path Loss Model,” IEEE Transactions on Wireless Communications, Vol. 5, No. 12, pp. 3626-3633, 2006.
    [25] G. Mao, B. D. O. Anderson, and B. Fidan, “Path Loss Exponent Estimation for Wireless Sensor Network Localization,” Computer Networks, Vol. 51, No. 10, pp. 2467-2483, 2007.
    [26] J. Shirahama and T. Ohtsuki, “RSS-based Localization in Environments with Different Path Loss Exponent for Each Link,” In Proc. of IEEE Vehicular Technology Conference, pp. 1509-1513, 2008.
    [27] S. Park, H.-S. Ahn, and W. Yu, “Adaptive Path-loss Model-based Indoor Localization,” In Proc. of the ICCE, Las Vegas, USA, pp.1-2 ,2008.
    [28] A. Boukerche, “Algoritms and Protocos for Wireless Senosr Networks,” Wiley-IEEE Press, 2009.
    [29] E. E. Lin, B. G. Lau Lee, S. C. Lee, and W. Y. Chung, “Enhanced RSSI-Based High Accuracy Real-Time User Location Tracking System for Indoor and Outdoor Environments,” International Journal on Smart Sensing and Intelligent Systems, Vol. 1, No. 2, 2008.
    [30] T. S. Rappaport, “Wireless communications: principle and practice,” 2nd Ed. NewJersey: Prentice Hall, 2001.
    [31] K. Pahlavan, and A.Levesque, “Wireless Information Networks,” 2nd Ed.John Wiley & Sons, Inc, 2005.
    [32] P. Barsocchi, S. Lenzi, S. Chessa, and G. Giunta, “A Novel Approach to Indoor RSS Localization by Automatic Calibration of the Wireless Propagation Model,” In Proc. of IEEE 69th Vehicular Technology Conference, Spain, pp. 1–5, 2009.
    [33] M. Ilyas , I. Mahgoub , and L. Kelly, “Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems,” CRC Press, 2004.
    [34] T.Scott, K.Wu, and D.Hoffman, “Radio Propagation Patterns in Wireless Sensor Networks: New Experimental Resutls,” In Proc. of the IWCMC, pp.857-862, 2006.
    [35] “System–on–chip for 2.4 GHz ZigBee /IEEE 802.15.4 with Location Engine,” Texas Instruments, http://focus.ti.com/lit/ds/symlink/cc2431.pdf, retrieved on Jan. 2012.
    [36] S. Tennina, M. Di Renzo, F. Graziosi, and F. Santucci, “Locating Zigbee Nodes Using the TI’s CC2431 Location Engine: A Testbed Platform and New Solutions for Positioning Estimation of WSNs in Dynamic Indoor Environments,” in ACM Int. Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, San Francisco, USA, pp. 37-42, 2008.
    [37] K. Aamodt, “CC2431 Location Engine. Application Note AN042,” Texas Instruments. ZigBee Alliance, “ZigBee Specification Version r13,” San Ramon, CA, USA, Dec. 2006,http://www.ti.com/lit/an/swra095/swra095.pdf, retrieved on Jan. 2012.
    [38] ZigBee Alliance, “ZigBee CLUSTER LIBRARY SPECIFICATION Version r02,” San Ramon, CA, USA, Dec, 2008. http://www.zigbee.org//, retrieved on Jan. 2012.
    [39] Y. C. Chen, J. R. Chiang, H. H. Chu, P. Huang, and A. W. Tsui, “Sensor-assisted Wi-Fi indoor location system for adapting to environmental dynamics,” in Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 118–125, 2005
    [40] R.L. Knoblauch, M.T. Pietrucha, M. Nitzburg, “Field Studies of Pedestrian Walking Speed and Start-up Time,” Transportation Research Board Records No. 1538, pp.27-38, 1996.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE