| 研究生: |
黃建銓 Huang, Chien-chuan |
|---|---|
| 論文名稱: |
桶狀扭曲影像修正電路之設計與實現 VLSI Design and Implementation for Barrel Distortion Correction |
| 指導教授: |
陳培殷
Chen, Pei-yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 桶狀扭曲修正 、廣角 、硬體架構 |
| 外文關鍵詞: | barrel distortion correction, wide-angle, VLSI architecture |
| 相關次數: | 點閱:111 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,廣角攝影機廣泛地應用在各種領域:如監視、醫療以及航空等等。由於廣角攝影機所取得的影像,通常會受到桶狀扭曲(barrel distortion)效應的影響,因此需要使用適當的演算法來對桶狀扭曲廣角影像進行修正。
為了修正扭曲影像,通常需取得原始影像中的兩個參數,一是像素點與扭曲中心點的距離,另一個是像素點與扭曲中心點連線和水平線的夾角,以進行桶狀扭曲的修正。傳統的作法乃是利用座標轉換器(CORDIC)的硬體來計算出距離與夾角,但這樣的方式需要大量的運算時間和極高的硬體成本。
本論文提出一個低成本的桶狀扭曲影像修正電路VLSI架構,藉由利用放射狀扭曲的特性和長度比例的相關聯性,來達成有效率的硬體實現。電路架構是以管線化的的方式來設計並使用TSMC 0.18 標準元件庫來合成實現。合成結果顯示,所須的邏輯閘數為45128,並可達到150 MHz之工作時脈。
In recent years, the wide-angle camera is widely used in many fields, ranging from surveillance to medical imaging. However, images captured by wide-angle lens suffer from barrel distortion. A suitable algorithm is necessary to correct the distorted images.
To perform barrel distortion correction, we usually need to calculate the distance between the pixel to be corrected and the distorted center of the wide-angle camera, and the included angle of the distance and horizontal axis. The traditional hardware implementation obtains the distance and angle by using the technique of the coordinate rotation digital computer (CORDIC). However, this kind of implementation requires extensive computational time and higher hardware cost.
In this thesis, a low-cost barrel distortion correction VLSI circuit that exploits both characteristic of radius distortion model and ratio of the length is presented. The proposed architecture is designed with the pipelined technique and implemented with TSMC 0.18 cell library. Synthesis results show that our design contains 44992 gate counts and operates at a clock rate of 150 MHz.
[1] American Society of Photogrammetry, Manual of Photogrammetry., 4th edition, 1980.
[2] A. Fitzgibbon. “Simultaneous linear estimation of multiple view geometry and lens distortion,” CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference, pages I:125-132, 2001.
[3] Swaminathan and S.K. Nayar, “Nonmetric Calibration of Wide-Angle Lenses and Polycameras,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1172-1178, Oct. 2000.
[4] Manojit Sarkar, and Marc H. Brown., “Graphical fisheye views,” Communications of the ACM, 37(12), pp. 73-84, 1994.
[5] A. Conrady, “Decentering Lens Systems,” Monthly Notice of the Royal Astronomical Soc., vol. 79, pp. 384-390, 1919.
[6] Kannala. J., Brandt, S.S., “A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1335-1340, Aug. 2006.
[7] D. Radhakrishnan, K. V. Asari, and S. Kumar, “A new approach for non-linear distortion correction in endoscopic images based on least squares estimation,” IEEE Trans. Med. Imag., vol. 18, no. 4, pp. 345–354, Apr. 1999.
[8] 何維信,2002,航空攝影測量學,大中國圖書公司,第1:133 頁
[9] Hau T. Ngo and Vijayan K. Asari, “A Pipeline Architecture for Real-Time Correction of Barrel Distortion in Wide-Angle Camera Images,” IEEE Trans. Circuits and System for Video Technology, vol. 15, no. 3, Mar. 2005.
[10] K. V. Asari, “Non-linear spatial warping of endoscopic images: An architectural perspective for real-time applications,” J. Microprocess. Microsyst., vol. 26, no. 4, pp. 161–171, May 2002.
[11] D. D. Gajski, Principles of Digital Design. Upper Saddle River, NJ: Prentice-Hall, 1997.
[12] DesignWare Building block IP, Synopsys Inc., http://www.synopsys.com/.