簡易檢索 / 詳目顯示

研究生: 陳鳳瑜
Chen, Fung-Yu
論文名稱: 氧化鉻添加鍶鋇鈮陶瓷的介電性質及燒結行為
Dielectric Properties and Sintering Behavior of Chromium-Doped Strontium Barium Niobate Ceramics
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 129
中文關鍵詞: 鍶鋇鈮
外文關鍵詞: SBN, random field
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鍶鋇鈮陶瓷是一種很好的透光材料,已可應用於工業上。雖然鍶鋇鈮單晶的性質已廣泛被研究,因受形狀大小、機械強度及價格的限制,並無法實際應用。因此開發鍶鋇鈮多晶陶瓷,仍必然趨勢。

      在鍶鋇鈮陶瓷中添加Cr2O3,探討其燒結行為及介電性質。由於Cr離子取代部分Nb離子占據在B位置,產生電荷補償機制,隨添加量上升,晶格常數中,a軸拉長,c軸縮短。燒結行為上,隨Cr2O3添加量至 2mole %,由於產生的電荷補償造成Nb-O鍵能量下降,緻密化速率上升。由SEM佐證發現有添加Cr2O3時,其晶粒明顯較未添加大很多。在介電性質,利用電滯曲線( the Hysteresis loop )求出殘留極化量( the remanent polarization )、弛緩時間( the relaxation time )及Random field與添加量的關係,得知隨添加量上升,殘留極化量上升,由於電荷擾動( the charge fluctuation )程度增加,因此random field增加。

      Strontium barium niobate ( SBN ) ceramic is a good electro-optic material and has been widely used. Though the properties of the single crystal, SBN, has been intensively studied, there are still some restrictions in their applications because of the small size, low mechanical strength, and high cost. Hence, it has been intrigued to strontium barium niobate ceramic.

      Strontium barium niobate doped Cr2O3 is investigated into the sintering behavior and the dielectric properties. It produces the charge compensation due to the Cr ions which replace a part of Nb ions in the B site. Due to the increase of the quantity of the additive, Cr2O3, the a axis is increased, but the c axis is decreased. In the sintering behavior, the additive up to 2 mole%, the densification rate is increased. It is because of the charge compensation. In the dielectric properties, the remanent polarization, the relaxation time, and the Random field are studied by the Hysteresis loop. When the additive is increased, the remanent polarization is promoted. Due to the increase of the degree of the charge fluctuation, the Random field is increased.

    中文摘要.....................................................................Ⅰ 英文摘要...........................................................................Ⅱ 目錄............................................................................i 圖目錄.......................................................................iv 表目錄.......................................................................xi 第一章 緒論.................................................................1 1-1 前言.................................................................1 1-2 本研究之重點及目的...................................................3 第二章 文獻回顧與理論基礎...................................................4 2-1 陶瓷製程與燒結和擴散性相變化..............................................4 2-1-1 粉末顆粒大小對於生胚結構的影響..........................................4 2-1-2 燒結............................................................................8 2-1-3 擴散性相變化(Diffuse phase transition, DPT)定義........................14 2-1-4 擴散性相變化生成機構...................................................14 2-2 SBN結構..................................................................17 2-3 SBN性質..................................................................23 2-3-1 SBN介電性質............................................................23 2-3-2光學性質...........................................................................31 2-4 SBN的陶瓷製程...........................................................................34 2-4-1 SBN粉末合成機構........................................................34 2-4-2 SN與BN合成SBN的反應機構模型............................................34 2-4-3 SBN單相燒結之顯微結構演進與控制........................................35 2-5 Random Fields (RFs)......................................................41 2-5-1 Relaxor......................................................................41 2-5-2 FC和ZFC................................................................43 2-5-3純SBN的RFs..............................................................43 2-5-4有添加物SBN的RFs........................................................45 2-5-5在失序鐵電(disordered ferroelectrics)中的Random electric fields.........54 第三章 實驗方法及步驟........................................................58 3-1實驗藥品..................................................................58 3-2樣品準備..................................................................58 3-3 性質的量測...............................................................59 3-3-1 X光繞射分析............................................................59 3-3-2 密度量測...............................................................60 3-3-3 介電常數對溫度關係的量測...............................................61 3-3-4 P-E曲線量測............................................................61 3-3-5 SEM顯微結構觀察........................................................62 3-4 緻密化速率的計算.........................................................62 第四章 結果與討論............................................................65 4-1 電荷補償缺陷(charge-compensated defect)..................................65 4-2 單相燒結行為和顯微結構...................................................68 4-3 介電性質.................................................................85 4-4 relaxor行為..............................................................89 4-4-1 random field model.....................................................89 4-4-2 Cr2O3添加之SBN的random field..........................................101 第五章 結論.................................................................106 第六章 參考文獻.............................................................107

    1. Jyh-Tzong Shiue, “Reaction kinetics, Sintering Behavior, and Dielectric Properties of Ceria-Doped Strontium Barium Niobate Ceramics,博士論文, 2003.
    2. M. N. Rahaman,” Ceramic Processing and Sintering”.
    3. Eric Liniger and Rishi Raj, “Packing and Sintering of Two-Dimensional Structures Made from Bimodal Particle Size Distributions,” J. Am. Ceram. Soc., 70 [11] 843-849 (1987).
    4. A. G. Evans, “Considerations of Inhomogeneity Effects in Sintering,” J. Am. Ceram. Soc., 65 [10] 497-501 (1982).
    5. R. L. Coble, J. Appl. Phys., 32, 787 (1961).
    6. Junhong Zhao and Martin P. Harmer,” Effect of Pore Distribution on Microstructure Development: II, First- and Second-Generation Pores,” J. Am. Ceram. Soc., 71 [7] 530-539 (1988).
    7. Ru-Yuan Yang, “A Study on the Core-Shell Structure of Pb(Fe2/3W1/3)O3”, 碩士論文, 2000.
    8. P. B. Jamieson. S. S. Abrahams and J. L. Bernstein, “Ferroelectric Tungsten Bronze- Type Crystal Structure. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78,”J. Chem. Phys., 48, 5048 (1968).
    9. A. M. Glass,” Investigation of the Electrical Properties of Sr1-XBaXNb2O6 with Special Reference to Pyroelectric Detection,” J. Appl. Phys., 40, 4699-4713 (1969).
    10. J. R. Carruther and M. Grasso,” Phase Equilibria Relations in the Ternary System BaO-SrO-Nb2O5,” J. Electrochem. Soc., 117, 1426 (1970).
    11. J. Wingbermuhle, M. Meyer, O. F. Schirmer, R. Pankrath, and R. K. Kremer,” Electron Paramagnetic Resonance of Ce3+ in Strontium Barium Niobate,” J. Phys.: Condens. Matter, 12, 4277-4284 (2000).
    12. N. S. Vandamme, A. E. Sutherland, L. Jones, K. Bridger, and S. R. Winzer, “Fabrication of Optically Transparent and Electrooptic Strontium Barium Niobate Ceramics,” J. Am. Ceram. Soc., 74 [8] 1785 (1991).
    13. M. P. Trubelja, E. Ryba, D. K. Smith,” A study of Positional disorder in Strontium Barium Niobate,” J. Mater. Sci. 31, 1435-1443, (1996).
    14. R. C. Baetzold,” Calculations of Defect Properties Important in Photorefractive Sr0.6Ba0.4Nb2O6,” Phas. Rev. B, [48], 9, 5789-5796, (1993).
    15. Yuhuan Xu, Zhongrong Li, Wu Li, and Hong Wang,” Phase Transition of Some Ferroelectric Niobate Crystals with Tungsten-Bronze Structure at Low Temperatures,” Phys. Rev. B, [40] 11902-11908, (1989).
    16. J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc and R. Pankrath,” Random-field Ising-type Transition of Pure and Doped SBN from the Relaxor into the Ferroelectric State,” Europhys. Lett., 55(6) 781-787 (2001).
    17. L. A. Bursill and Peng Ju Lin,” Chaotic States Observed in Strontium Barium Niobate,” Philosophical Magazine B, 54[2] 157-170 (1986).
    18. A. A. Ballman and H. Brown,” The Growth and Property of Sr1-XBaXNb2O6, A Tungsten Bronze Ferroelectric,” J. Cryst. Growth 1, 311 (1967).
    19. Dwight Viehland, Z. Xu, and Weng-Hsing Huang, “Structure-Property Relationships in Strontium Barium Niobate, I. Needle-Like Nanopolar Domains and the Metastably-Locked Incommensurate Structure,” Philosophical Magazine A, 71[2] 205-217 (1995).
    20. R. R. Neurgaonkar, W. F. Hall, J. R. Oliver, W. W. Ho and W. K. Cory, Ferroelectrics 87, 167 (1988).
    21. Koichi Sayano, Amnon Yariv, Ratnakar R. Neurgaonkar,” Photorefractive Gain and Response Time of Cr-Doped Strontium Barium Niobate,”Appl. Phys. Lett. 55(4), 24 July (1989).
    22. M. Gao, S. Kapphan, R. Pankrath,” Photoluminescence and thermoluminescence in SBN: Cr crystals,”J. Phys. And Chem. of Sol. 61, 1959-1971 (2000).
    23. S. B. Deshpande, H. S. Potdar, P. D. Godbole, and S. K. Date,” Preparation and Ferroelectric Properties of SBN: 50,” J. Am. Ceram. Soc., 75[9],2581 (1992).
    24. S. Hirano, T. Yogo, K. Kikuta, and K. Ogiso,” Preparation of Strontium Barium Niobate by Sol-Gel Method,” J. Am. Ceram. Soc., 75[6] 1697-1700 (1992).
    25. 李文景,博士論文,國立成功大學,1997。
    26. Junichi Takahashi, Shiro Nishiwaki and Kohei Kodaira,” Sintering and Microstructure of Sr0.6Ba0.4Nb2O6 Ceramics,”363-370, in Ceramic Transactions vol. 41: Grain Boundary and Interfacial Phenomena in Electronic Ceramics, edited by Lionel M. Levinson and Shin-ichi hirano, American Ceramic Society, Columbus, OH, 1994.
    27. Han-Young Lee and R. Freer,” The Mechanism of Abnormal Grain Growth in Sr0.6Ba0.4Nb2O6 Ceramics,” J. Appl. Phys., 81[1] 376-382 (1997).
    28. Han-Young Lee and R. Freer,” Abnormal Grain Growth and Liquid-Phase Sintering in Sr0.6Ba0.4Nb2O6 (SBN60) Ceramics,” J. Mater. Sci., 33, 1703-1708(1998).
    29. Tsang-Tse Fang, Edin Chen and Wen-Jiung Lee,” On the Discontinuous Grain Growth of SrXBa1-XNb2O6 Ceramics” J. Europ. Ceram., 20, 527-530 (2000).
    30. P. Lehnen and W. Kleemann,” Ferroelectric Nanodomains in the Uniaxial Relaxor System Sr0.61-XBa0.39Nb2O6: CeX3+,”Phys. Rev. B, 64, 224109 (2001).
    31. T. Granzow, Th. Woike, M. Wohlecke, M. Imlau, and W. Kleemann,” Change from 3D-Ising to Random Field-Ising-Model Criticality in a Uniaxial Relaxor Ferroelectric,” Phys. Rev. Lett. 92, 6, 065701-1~4, (2004).
    32. T. Granzow, U. Dorfler, and Th. Woike,” Local Electric-Field-Driven Repoling Reflected in the Ferroelectric Polarization of Ce-Doped Sr0.61Ba0.39Nb2O6,”Appl. Phys. Lett., 80, 3, 470-472, (2002).
    33. P. Lehnen, E. Beckers, W. Kleemann, Th. Woike, and R. Pankrath,” Ferroelectric Domains in the Uniaxial Relaxor System SBN: Ce, Cr and Co,” Ferroelectrics, 253, 11-19, (2001).
    34. T. Granzow, U. Dorfler, Th. Woike, M. Wohlecke, R. Pankrath, M. Imlau, and W. Kleemann,” Evidence of Random Electric Fields in the Relaxor-Ferroelectric Sr0.61Ba0.39Nb2O6,” Europhys. Lett., 57 (4), 597-603, (2002).
    35. M D Glinchuk and V A Stephanovich,” Random Fields and Their Influence on the Phase Transition in Disordered Ferroelectrics,” J. Phys. : Condens. Mater 6, 6317-6327 (1994).
    36. T. Granzow and Th. Woike,"Polarization-Based Adjustable Memory Behavior in Relaxor Ferroelectrics,” Phys. Rev. Lett., 89, 127601-1~4, (2002).
    37. D. Schaniel, Th. Woike and Weckwerth,” Valence-sensitive Determination of Cr3+ and Ce3+ Concentration in Doped Sr0.61Ba0.39Nb2O6 from Magnetization Studies and Paramagnetic Relaxation of Ce3+,”Phys. Rev. B, 70, 144410-1~6, (2004).
    38. M. Gao, R. pankrath, S. Kapphan, and V. Vikhnin,” Light-induced Charge Transfer and Kinetics of the NIR Absorption of Nb4+ Polars in SBN Crystals at Low Temperatures,” Appl. Phys. B 68, 849-858, (1999).
    39. T. Woike, U. Dorfler, L. Tsankov, G. Weckwerth, D. Wolf, M. Wohlecke, T. Granzow, R. Pankrath, M. Imlau, W. Kleemann,” Photorefractive Properties of Cr-doped Sr0.61Ba0.39Nb2O6 Related to Crystal Purity and Doping Concentration,” Appl. Phys. B 72, 661-666, (2001).
    40. R. Niemann, K. Buse, R. Pankrath, M. Neumann,” XPS Study of Photorefractive Sr0.61Ba0.39Nb2O6:Ce Crystals,” Solid State Commum. 98, 209, (1996); XPS experiment of SBN: Cr shows more than 90% of Cr are in Cr3+ state, M. Neumann, private communication.
    41. J. Dec, W. kleemann, th. Woike, and R. Pankrath,” Phase Transitions in Sr0.61Ba0.39Nb2O6: Ce3+: ⅠSusceptibility of Clusters and Domains,” Eur. Phys. J. B 14, 627-632, (2000).
    42. Th. Woike, G. Weckwerth, H. Palme, and r. Pankrath,” Instrumental Neutron Activation and Absorption Spectroscopy of Photorefractive Strontium-Barium Niobate Single Crystals Doped with Cerium,” Solid State Commun, 102,743-747, (1997); INAA of SBN: Cr, Th. Woike, private communication.
    43. H. Amorin, J. Portelles, F. Guerrero, A. Fundora, and J.M. Siqueiros,” Ferroelectric Properties of the La0.03Sr0.255Ba0.7Nb2-yTiyO6-y/2 Ceramic System,” J. Electroceramics 3: 4, 371-375, (1999).
    44. S. Miga, J. Dec, W. Kleemann, and R. Pankrath,” Aging in the Ferroic Random-field Ising Model System Strontium-Barium Niobate,” Phys. Rev. B 70, 134108, (2004).
    45. Tsang-Tse Fang and H. Palmour, Ⅲ,” Useful Extensions of the Statistical Theory of Sintering,” Ceramics International 15, 329-335, (1989).
    46. T sang-Tse Fang and H. Palmour, Ⅲ,” Evolution of Pore Morphology in Sintering Power Compacts,” Ceramics International 16, 1-10, (1990).
    47. Wen-Jiung Lee and Tsang-Tse Fang.” Effect of the Strontium: Barium Ratio and Atmosphere on the Sintering Behavior of Stronium Barium Niobate,” J. Am. Ceram. Soc., 81 [2], 300-304, (1998).
    48. T. Woike, V. Petricek, M. Dusek, N. Hansen, P. Fertey, C. Lecomte, A. Arakcheeva, G. Chapuis, M. Imlau, and R. Pankrath, Acta crystallogr., Sect. B: Struct. Sci. B59, 28 (2003).
    49. D. Schaniel, J. Schefer, V. Petricek, M. Imlau, R. Pankrath, T. Granzow, and T. Woike, “Superspace approach applied to a neutron-diffraction study of the holographic data storage material Sr0.61Ba0.39Nb2O6,” Appl. Phys. A: Mater. Sci. Process. A74, 963, (2002).
    50. J. Dec, W. Kleemann, S. Miga, C. Filipic, A. Levstik, R. Pirc, T. Granzow, and R. Pankrath,” Probing Polar Nanoregions in Sr0.61Ba0.39Nb2O6 via Second-harmonic Dielectric response,” Phys.Rev. B 68, 092105-1~4, (2003).
    51. T. Granzow, U. Dorfler, and Th. Woike,” Influence of Pinning Effects on the Ferroelectric Hysteresis in Cerium-doped Sr0.61Ba0.39Nb2O6,” Phys. Rev. B, 63, 174101-1~7, (2001).
    52. D. Viehland and Yun-Han Chen,” Random-field Model for Ferroelectric Domain Dynamics and Polarization Reversal,” J. Appl. Phys., 88, 6696-6707, (2000).
    53. Koichi Sayano and Amnon Yariv,” Enhanced Photorefractive Gain in Cr-doped Strontium Barium Niobate with an External DC electric Field,” J. Appl. Phys. 67(3), 1594-1596, (1990).
    54. C. Greskovich and J. Anthony Brewer,” Solubility of Magnesia in Polycrystalline Alumina at High Temperatures,” J. Am. Ceram. Soc., 84[2] 420-425, (2001).
    55. Takaysau Ikegami and Katsuya Eguchi,” Two Kinds of Roles of MgO in the Densification and Grain Growth of Alumina under Various Atmospheres: Sensitive and Insensitive Roles to the Experimental Procedures,” J. Mater. Res., 14 [2], 509-517, (1999).

    下載圖示 校內:2006-08-09公開
    校外:2006-08-09公開
    QR CODE