| 研究生: |
賴冠穎 Lai, Kuan-Ying |
|---|---|
| 論文名稱: |
緩釋疫苗之貼片可溶式幾丁聚醣微針於經皮免疫之應用 Sustained delivery of vaccine using patch-dissolvable chitosan microneedles for transcutaneous immunization |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 佐劑 、幾丁聚醣 、鑲嵌式微針 、緩慢釋放 、經皮免疫 |
| 外文關鍵詞: | adjuvant, chitosan, embeddable microneedles, sustained delivery, transcutaneous immunization |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今開發之疫苗微針貼片僅侷限於快速釋放劑型,尚無可緩釋疫苗之微針,本論文為研發一鑲嵌式緩釋疫苗之新型微針系統,由將生物可降解之幾丁聚醣(chitosan, CS)微針與水溶性聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)和聚乙烯醇(polyvinyl alcohol, PVA)支撐陣列組成,此微針能在穿刺皮膚後,藉由體內組織液將後端支撐陣列溶解,僅留幾丁聚醣針體在皮膚中,緩慢而持續地釋放疫苗;由體外豬皮及體內大鼠穿刺測試證實,此微針貼片具有足夠之機械強度可刺穿角質層,並讓微針鑲嵌於富含抗原呈現細胞之表皮層及真皮層中(深度650700 m),造成之微通道能夠在六小時內癒合,避免傷口感染之風險,穿刺後所產生之些微紅腫,可在三天內完全消失。將微針包覆螢光抗原後刺入老鼠背部皮膚,發現微針能在體內緩慢降解並持續釋放抗原長達28天。大鼠免疫試驗結果證實,微針僅須包覆肌肉注射40 % 之抗原量即可誘發相當或較高之抗體產生長達8週。以小鼠進行流感疫苗之免疫試驗,肌肉注射流感疫苗時,若添加幾丁聚醣溶液作為佐劑可快速增強免疫反應,在第2週即可產生高量抗體,而以微針施打流感疫苗,藉由微針在體內被緩慢降解可持續釋放出疫苗,達到類似多次補強注射(boost)效果,在接種4週時,抗體量明顯高於肌肉注射純病毒組及病毒加幾丁聚醣佐劑組,且在12週時抗體量為肌肉注射純病毒組之2.5倍。本研究所開發之貼片可溶式緩釋型幾丁聚醣微針接種不須長期黏貼貼片,即可達到經皮緩釋疫苗之目的,以較少的疫苗量,即達到類似肌肉注射的免疫反應,可有效節省疫苗量。
Currently developed microneedles for vaccine delivery always rapidly release encapsulated materials. Prolonged antigen release is highly desirable to induce a “depot” effect, which can result in a more potent and persistent immune response. This study introduces an integrated microneedle system, composed of embeddable chitosan microneedles with a dissolvable poly(vinyl pyrrolidone)/poly(vinyl alcohol) (PVP/PVA) supporting array, for complete and sustained delivery of encapsulated antigens to the skin. The strong PVP/PVA supporting array can provide mechanical strength to fully insert the microneedles into the skin. When inserted into rat and porcine skin, the skin interstitial fluid quickly dissolved the supporting array and chitosan microneedles were left within the skin for sustained drug delivery. The microneedle penetration depth was approximately 650-700 m (i.e. the total length of the microneedle), which is beneficial for targeted delivery of antigens to antigen-presenting cells in the epidermis and dermis. When the OVA-loaded microneedles were embedded in rat skin in vivo, histological examination showed that the microneedles gradually degraded and prolonged OVA releasing at the insertion sites for up to 28 days. Compared to traditional intramuscular immunization (500 g OVA), rats immunized by a lower microneedle dose of 200 g OVA showed a significantly higher OVA-specific antibody response on the second week which lasted for at least 8 weeks. Additionally, mice vaccinated with vaccine-loaded microneedles produced 2.5-fold influenza-specific antibody responses compared with those induced by the intramuscular immunization after 12 weeks. These results suggest that embeddable chitosan microneedles are a promising depot for extended delivery of encapsulated antigens, which may provide sustained immune stimulation and improve immunogenicity.
[1] Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Controlled Release 2010;148:266-82.
[2] van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Controlled Release 2012;161:645-55.
[3] Pegoraro C, MacNeil S, Battaglia G. Transdermal drug delivery: from micro to nano. Nanoscale 2012;4:1881-94.
[4] Cevc GV, U. Spatial distribution of cutaneous microvasculature and local drug clearance after drug application on the skin. J Controlled Release 2007;118:18-26.
[5] MacNeil S. Biomaterials for tissue engineering of skin. Materials today 2008;11:26-35.
[6] Loan Honeywell-Nguyen P, Wouter Groenink HW, Bouwstra JA. Elastic Vesicles as a tool for dermal and transdermal delivery. J Liposome Res 2006;16:273-80.
[7] Elias PM. Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 1983;80:44-9.
[8] Warner RR, Stone KJ, Boissy YL. Hydration disrupts human stratum corneum ultrastructure. J Invest Dermatol 2003;120:275-84.
[9] Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Phytorem 2008;364:227-36.
[10] Nestle FO, Di Meglio P,Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nature reviews immunology 2009;9:679-91.
[11] Http://skininfo.org/normal-skin/normal-skin-structure/.
[12] Balmayor ER, Azevedo HS, Reis RL. Controlled delivery systems: from pharmaceuticals to cells and genes. Pharm Res 2011;28:1241-58.
[13] Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Delivery Rev 2012;64:1547-68.
[14] Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 2002;8:415-9.
[15] McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl Acad Sci USA 2003;100:13755-60.
[16] Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Controlled Release 2010;142:187-95.
[17] DeMuth PC, Su X, Samuel RE, Hammond PT, Irvine DJ. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater 2010;22:4851-6.
[18] Fernando GJ, Chen X, Primiero CA, Yukiko SR, Fairmaid EJ, Corbett HJ, et al. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. J Controlled Release 2012;159:215-21.
[19] Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res 2006;23:1008-19.
[20] Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 2008;25:104-13.
[21] Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113-24.
[22] Matsuo K, Yokota Y, Zhai Y, Quan YS, Kamiyama F, Mukai Y, et al. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J Controlled Release 2012;161:10-7.
[23] Gardeniers HJGE, Luttge R, Berenschot EJW, de Boer MJ, Yeshurun SY, Hefetz M, van't Oever R,van den Berg A. Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech S 2003;12:855-62.
[24] Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol 2006;126:1080-7.
[25] Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG,Prausnitz MR. Lack of pain associated with microfabricated microneedles. Anesthesia and analgesia 2001;92:502-4.
[26] Chen X, Fernando GJ, Raphael AP, Yukiko SR, Fairmaid EJ, Primiero CA, et al. Rapid kinetics to peak serum antibodies is achieved following influenza vaccination by dry-coated densely packed microprojections to skin. J Cntrolled Rlease 2012;158:78-84.
[27] Bachmann MF, Beerli RR, Agnellini P, Wolint P, Schwarz K, Oxenius A. Long-lived memory CD8+ T cells are programmed by prolonged antigen exposure and low levels of cellular activation. Eur J Imunol 2006;36:842-54.
[28] Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004;4:841-55.
[29] Moon HJ, Lee JS, Talactac MR, Chowdhury MY, Kim JH, Park ME, et al. Mucosal immunization with recombinant influenza hemagglutinin protein and poly gamma-glutamate/chitosan nanoparticles induces protection against highly pathogenic influenza A virus. Vet Microbiol 2012;160:277-89.
[30] Korteweg C, Gu J. Pandemic influenza A (H1N1) virus infection and avian influenza A (H5N1) virus infection: a comparative analysis. Biochem Cell Biol 2010;88:575-87.
[31] Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol 2012;24:310-5.
[32] Andrianov AK, Marin A, DeCollibus DP. Microneedles with intrinsic immunoadjuvant properties: microfabrication, protein stability, and modulated release. Pharm Res 2011;28:58-65.
[33] Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006;31:603-32.
[34] Dutta PK, Dutta J, Tripathi VS. Chitin and chitosan: Chemistry, properties and applications. J Sediment Petrol 2004;63:20-31.
[35] Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr Polym 2010;82:227-32.
[36] Boucaud A, Machet L, Arbeille B, Machet MC, Sournac M, Mavon A, Patat F, Vaillant L. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm 2001;228:69-77.
[37] Shibata Y, Foster L, Bradfield JF, Myrvik QN. Oral administration of chitin down-regulates serum IgE levels and lung eosinophilia in the allergic mouse. J Immunol 2000;164:1314-21.
[38] Maeda M, Murakami H, Ohta H, Tajima M. Stimulation of IgM production in human-human hybridoma HB4C5 cells by chitosan. Biosci Biotechnol Biochem 1992;56: 427-31.
[39] Koide SS MD. Chitin-chitosan:properties, benefits and risks. Nutr Res 1998;18:1091-101.
[40] Esteban MA, Mulero V, Cuesta A, Ortuno J, Meseguer J. Effects of injecting chitin particles on the innate immune response of gilthead seabream. Fish Shellfish Immun 2000;10: 543-54.
[41] Rauw F, Gardin Y, Palya V, Anbari S, Gonze M, Lemaire S, van den Berg T, Lambrecht B. The positive adjuvant effect of chitosan on antigen-specific cell-mediated immunity after chickens vaccination with live Newcastle disease vaccine. Vet Immunol Immunop 2010;134:249-58.
[42] Higashiyama T. Novel functions and applications of trehalose. Pure Appl Chem 2002;74:1263-9.
[43] Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 1995;62:3592-7.
[44] Leslie SB, Teter SA, Crowe LM, Crowe JH. Trehalose lowers membrane phase transitions in dry yeast cells. Biochim Biophys Acta 1994;1192:7-13.
[45] Bieganski RM, Fowler, A, Morgan JR, Toner M. Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose. Biotechnol Prog 1998;14: 615-20.
[46] Amorij JP, Meulenaar J, Hinrichs WL, Stegmann T, Huckriede A, Coenen F, et al. Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine 2007;25:6447-57.
[47] Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 1989;28:3916-22.
[48] Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharm Res 2011;28:135-44.
[49] Song JM, Kim YC, Lipatov AS, Pearton M, Davis CT, Yoo DG, Park KM, Chen LM, Quan FS, Birchall JC, Donis RO, Prausnitz MR, Compans RW, Kang SM. Microneedle delivery of H5N1 influenza virus-like particles to the skin induces long-lasting B- and T-cell responses in mice. Clinical and vaccine immunology 2010;17: 1381-9.
[50] Haaf F, Sanner A, Straub F. Polymers of N-Vinylpyrrolidone-synthesis, characterization and uses. Eur Polym J 1985;17:143-52.
[51] Wang H, Yu T, Zhao C, Du Q. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fiber Polym 2009;10:1-5.
[52] Donnelly RF, Singh TR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater 2012;22:4879-90.
[53] Bal SM, Caussin J, Pavel S, Bouwstra JA. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci 2008;35:193-202.
[54] Bortolatto J, Borducchi E, Rodriguez D, Keller AC, Faquim-Mauro E, Bortoluci KR, et al. Toll-like receptor 4 agonists adsorbed to aluminium hydroxide adjuvant attenuate ovalbumin-specific allergic airway disease: role of MyD88 adaptor molecule and interleukin-12/interferon-gamma axis. Clin Exp Allergy 2008;38:1668-79.
校內:2018-08-30公開