簡易檢索 / 詳目顯示

研究生: 王聖鐸
Wang, Sendo
論文名稱: 以浮測模型理論萃取三維空間資訊-以建物重建為例
Theory of Floating Model in 3D Spatial Information Extraction – A Case Study on Building Reconstruction
指導教授: 曾義星
Tseng, Yi-Hsing
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 169
中文關鍵詞: 浮測模型建物重建數值攝影測量三維空間資訊
外文關鍵詞: Floating Model, Digital Photogrammetry, Building Reconstruction, 3D Spatial Information
相關次數: 點閱:110下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   三維城市模型(3D City Model)或三維空間資訊系統(3D Spatial Information System)整合並提供各方面所需的三維空間資訊,可以廣泛應用在都市計畫、市政管理、不動產管理、交通規劃、機場航道規劃、無線基地台規劃、觀光導覽、國安維護等民生及專業用途。數十年來攝影測量一直被認為是最有效且精確的測繪技術,然而傳統以浮測標(Floating Mark)逐點量測的方式建置三維城市模型時,操作員需要專注於屋角點的量測及點位之連結,是三維空間資訊萃取的瓶頸。本研究採用模型式建物萃取法(Model-based Building Extraction),將傳統的浮測標擴充為浮測模型(Floating Model),使量測的單元不再是抽象的一個點位,而是許多種可伸縮、旋轉、移動的三維模型,期能以逐物件萃取的方式提升三維空間資訊之萃取效率。延伸浮測標量度的概念為浮測模型,即是將零維的浮測標拓展到三維實體,除了如同浮測標具備可調整的三維位置參數外,還依模型種類增加了各方向的伸縮尺度、空間旋轉等參數,可想像成一個漂浮在空間中,可移動、旋轉、縮放大小以量測地物的模型。將浮測模型投影至所有影像,並套合至影像上的目標地物,便有如回復攝影瞬間之幾何空間條件,此時之模型參數與影像外方位元素即為最佳解,此即以浮測模型萃取三維空間資訊之基本理論。本研究建置了點、線、面、立體四大類基本元件模型庫,量測員可以依需要選擇適當元件模型,在多張重疊像片上進行模型式的量度。並可依模型精細程度需求,以數個基本元件模型分部萃取,再透過布林運算規則組合為複合模型,因此能適用於萃取大多數的三維建物。以浮測模型為基礎,本研究提出一套半自動化萃取策略,操作員透過人機互動介面將模型一次套合至所有影像,再透過最小二乘模型-影像套合演算法自動計算最佳套合,以便在已知相片方位的條件下,利用浮測模型萃取地物的三維空間資訊,或在已知地物模型資訊的條件下利用模型求解相片的外方位元素。透過實驗案例證明,所提的浮測模型理論確可有效地應用於建物三維空間資訊之萃取,提高三維塑模之效率,並能達到傳統攝影測量之精度要求。

     3D city model or 3D spatial information system integrates 3D spatial information and thus can be applied to versatile applications such as urban planning, real estate managing, traffic evaluating, radio station locating, tourist guiding etc. Photogrammetry has been considered as the most efficient technique for extracting 3D spatial information in the last few decades. However, the operator has to measure the 3D coordinates of all points and connect the adjacent points in sequence. This point-by-point measurement of using floating mark has become the bottleneck while reconstructing the 3D city model. In this paper, we expanded the floating mark to the floating model based on the concept of model-based building extraction. The measuring tool is no longer only an abstract point but also many kinds of 3D model, which can be scaled, rotated, or moved in the space. The floating model is defined with a datum point whose 3D coordinates indicate the spatial position of the model as the floating mark does. Furthermore, each kind of models is associated with a set of pose parameters to describe its rotation about the three orthogonal axes and shape parameters to describe its scales along predefined directions. In other words, the floating model is a flexible entity floating in the space, and can be adjusted to fit the object by these parameters. If the model parameters are good enough to represent the 3D spatial information of the object, the projection of the floating model on every overlapped image will all be coincident to the object's image. Therefore, the basic idea of the floating model theory is to fit model to the overlapped images by adjusting the model parameters. In order to meet the needs of building reconstruction, we designed several primitive models and established a model-base that is composed of four kinds of models: point, line segment, surface, and solid. By means of human-computer interface, the operator is able to choose the most suitable model and measure the object on multiple images simultaneously. For the building with complicated structure, the extraction can be implemented following the Constructive Solid Geometry(CSG) according to the required level of details. The building can be split into several parts, modeled part-by-part, and finally joined into a complex model by Boolean Set Operators. Based on the floating model theory and model-based building extraction, we proposed a semi-automated extraction strategy. A friendly human-machine interface is designed for the operator to choose and adjust the floating model to fit the images manually. Then, the computer calculate the optimal fit by an ad hoc Least-Squares Model-Image Fitting(LSMIF) algorithm. Thus the 3D spatial information can be extracted object-by-object rather than point-by-point by means of floating model, which increases the efficiency and accuracy. Tested by a series of experiments on real aerial images, the proposed floating model has shown its capability and potential for 3D spatial information extraction.

    中文摘要………………………………………………………………………Ⅰ 英文摘要………………………………………………………………………Ⅱ 誌謝……………………………………………………………………………Ⅳ 目錄……………………………………………………………………………Ⅵ 圖目錄…………………………………………………………………………Ⅸ 表目錄………………………………………………………………………ⅩⅡ 第1章 緒論……………………………………………………………………1  §1.1 研究背景與動機……………………………………………………1  §1.2 相關研究……………………………………………………………4   §1.2.1 建物模型………………………………………………………4   §1.2.2 由上而下 v.s. 由下而上…………………………………6   §1.2.3 全自動化 v.s. 半自動化…………………………………8   §1.2.4 直線式攝影測量(Line Photogrammetry)………………14   §1.2.5 CAD式攝影測量(CAD-Based Photogrammetry)…………16  §1.3 研究議題與方法……………………………………………………18  §1.4 論文架構……………………………………………………………20 第2章 浮測模型理論…………………………………………………………22  §2.1 模型類別與描述……………………………………………………22   §2.1.1 零維實體模型…………………………………………………23   §2.1.2 一維實體模型…………………………………………………24   §2.1.3 二維實體模型…………………………………………………25   §2.1.4 三維實體模型…………………………………………………26  §2.2 模型的浮動與變形…………………………………………………28   §2.2.1 形狀參數………………………………………………………29   §2.2.2 姿態參數………………………………………………………31   §2.2.3 三維座標系統轉換……………………………………………32   §2.2.4 浮測模型的角點座標…………………………………………36  §2.3 模型與影像關係……………………………………………………46   §2.3.1 浮測標理論……………………………………………………46   §2.3.2 模型成像與影像方位之關係…………………………………48   §2.3.3 參數調整機制…………………………………………………51  §2.4 立體模型的觀測……………………………………………………53   §2.4.1 半模型…………………………………………………………53   §2.4.2 立體觀測的合適性……………………………………………55   §2.4.3 單張與多影像觀測……………………………………………56  §2.5 可行之模型式觀測模式……………………………………………58   §2.5.1 全手動調整……………………………………………………59   §2.5.2 半自動化觀測模式……………………………………………60  §2.6 模型—影像最佳套合觀念之引用…………………………………60   §2.6.1 最佳套合的依據………………………………………………61   §2.6.2 最佳套合演算法………………………………………………62 第3章 模型—影像最佳套合…………………………………………………64  §3.1 邊緣線偵測…………………………………………………………64  §3.2 搜尋環域……………………………………………………………69  §3.3 最小二乘套合………………………………………………………71  §3.4 觀測點位的權值……………………………………………………75   §3.4.1 以梯度大小為權………………………………………………75   §3.4.2 以梯度方向篩選………………………………………………78  §3.5 強制附合與人工修正………………………………………………80   §3.5.1 加入已知參數…………………………………………………81   §3.5.2 強制附合到點…………………………………………………83 第4章 模型式建物重建………………………………………………………85  §4.1 建物塑模……………………………………………………………85   §4.1.1 多面體模型……………………………………………………85   §4.1.2 稜柱體模型……………………………………………………86   §4.1.3 參數式多面體模型……………………………………………86   §4.1.4 建構實體幾何…………………………………………………87  §4.2 影像—模型互動關係………………………………………………89   §4.2.1 調整影像方位…………………………………………………89   §4.2.2 調整模型參數…………………………………………………90  §4.3 半自動萃取策略……………………………………………………91   §4.3.1 初始投影………………………………………………………93   §4.3.2 人機互動式套合………………………………………………95  §4.4 模型組合約制條件…………………………………………………101   §4.4.1 元件間之約制條件……………………………………………101   §4.4.2 建物間之約制條件……………………………………………104 第5章 程式設計與實驗測試…………………………………………………107  §5.1 程式設計……………………………………………………………107  §5.2 實驗影像說明………………………………………………………110  §5.3 手動量測測試………………………………………………………111   §5.3.1 各類浮測模型的萃取實例……………………………………111    §5.3.1.1 以直線段模型萃取圍牆…………………………………112    §5.3.1.2 以矩形面模型萃取游泳池………………………………115    §5.3.1.3 以橫三角柱模型萃取倉庫屋頂…………………………118   §5.3.2 以不同模型觀測同一棟建物…………………………………122    §5.3.2.1 以直線段模型觀測建物…………………………………123    §5.3.2.2 以屋脊型房屋模型觀測建物……………………………130  §5.4 LSMIF套合測試………………………………………………………133   §5.4.1 矩形體模型套合測試…………………………………………134   §5.4.2 環域測試………………………………………………………137   §5.4.3 收斂範圍測試…………………………………………………139   §5.4.4 十棟建物範例…………………………………………………141   §5.4.5 套合精度………………………………………………………144   §5.4.6 多張影像套合…………………………………………………145  §5.5 求定影像外方位測試………………………………………………147   §5.5.1 僅以一棟建物作為控制………………………………………148   §5.5.2 以三棟建物作為控制…………………………………………150   §5.5.3 以五棟建物作為控制…………………………………………151 第6章 結論與建議……………………………………………………………152  §6.1 浮測模型的優缺點…………………………………………………152  §6.2 實驗中所獲得的經驗………………………………………………154  §6.3 後續研究建議………………………………………………………157 參考文獻………………………………………………………………………159 自述……………………………………………………………………………169

    Abdel-salam, M.A., Gorte, B. and Korstens, M.J., 2001. Top Down 
     approach for Object Parameter Estimation, The 3rd International
     Symposium in Mobile Mapping Technology, Cairo, Egypt, Softcopy.
    Ameri, B., 2000a. Automatic Recognition and 3D Reconstruction of
     Buildings through Computer Vision and Digital Photogrammetry. 
     Doctor Thesis, University of Stuttgart, Stuttgart, Germany, 110
     pages.
    Ameri, B., 2000b. Feature Based Model Verification (FBMV): A New
     Concept for Hypothesis Validation in Building Reconstruction,
     The XIXth Congress of The International Society for Photogrammetry
     and Remote Sensing, Amsterdam, Netherlands, pp. 24-35.
    Baillard, C. and Zisserman, A., 2000. A Plane-sweep Strategy for
     the 3d Reconstruction of Buildings from Multiple Images,
     International Archives of Photogrammetry and Remote Sensing, XXXIII,
     part B2, pp.56-62.
    Bignone, F., Henricsson, O., Fua, P. and Strickler, M., 1996.
     Automatic Extraction of Generic House Roofs from High Resolution
     Aerial Imagery, The 4th European Conference on Computer Vision,
     Cambridge, UK, pp. 85-96.
    Böhm, J., Brenner, C., Gühring, J. and Fritsch, D., 2000. Automated
     Extraction of Features from CAD Models for 3D Object Recognition,
     The XIXth Congress of The International Society for Photogrammetry
     and Remote Sensing. Amsterdam, Netherlands, pp. 76-83.
    Braun, C., Kolbe, T., Lang, F., Schickler, W., Steinhage., V.,
     Cremers, A., Förstner, W. and Plümer L., 1995. Models for
     Photogrammetric Building Reconstruction, Computers & Graphics, 19(1):
     109-118.
    Brenner, C., 1999. Interactive Modelling Tools for 3D Building
     Reconstruction, In: D. Fritsch and R. Spiller (Editors),
     Photogrammetric Week '99. Wichmann, Stuttgart, Germany, pp. 23-34.
    Brenner, C., 2000. Towards Fully Automatic Generation of City
     Models, The XIXth Congress of The International Society for
     Photogrammetry and Remote Sensing. Amsterdam, Netherlands, pp.85-92.
    Brenner, C., 2001. City Models - Automation in Research and
     Practice. In: D. Fritsch and R. Spiller (Editors), Photogrammetric
     Week '01, Stuttgart, Germany, pp. 149-158.
    Brenner, C. and Haala, N., 1999. Towards Virtual Maps: On the
     Production of 3D City Models. GeoInformatics, 2(5): 10-13.
    Brenner, C., Haala, N. and Fritsch, D., 2001. Towards Fully
     Automated 3D City Model Generation. In: E.P. Baltsavias, A. Grün
     and L. Van Gool (Editors), The 3rd International Workshop on
     Automatic Extraction of Man-Made Objects from Aerial and Space
     Images, Balkema Publishers, Softcopy.
    Buchanan, T., 1992. Critical Sets for 3D Reconstruction Using Lines.
     In: G. Sanini (Editor), Computers Vision - ECCV, Berlin, Germany,
     pp. 730-738.
    Byne, J.H.M. and Anderson, J.A.D.W., 1998. A CAD-based Computer
     Vision System. Image and Vision Computing, 16(8): 533-539.
    Camps, O., Flynn, P.J. and Stockman, G.C., 1998. Recent Progress in
     CAD-based Computer Vision: An Introduction to the Special Issue.
     Computer Vision and Image Understanding, 69(3): 251-252.
    Canny, J., 1986. A Computational Approach to Edge Detection. IEEE
     Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):
     679-698.
    Chapman, D.P., Deacon, A.T.D., Hamid, A.A. and Kotowski, R., 1992.
     CAD Modelling of Radioactive Plant - The Role of Digital
     Photogrammetry in Hazardous Nuclear Environments, International
     Archives of Photogrammetry and Remote Sensing, XXIX, Part B5,
     pp.741-753.
    Chio, S.-H., 2001. A Practical Strategy for Roof Patch Extraction
     from Urban Stereo Aerial Images. Doctoral Dissertation, National
     Cheng Kung University, Tainan, Taiwan, 97 pages.
    Chio, S.-H. and Wang, S.-C., 1999. Semi-automatic System for Roof
     Reconstruction Based on 3-D Linear Segments, The 20th Asian
     Conference on Remote Sensing, Hong Kong, pp. 165-170.
    Das, S., Bhanu, B. and Ho, C.-C., 1994. Generic Object Recognition
     Using CAD-Based Multiple Representations, IEEE CAD-Based Vision
     Workshop, pp. 202-209.
    El-Hakim, S., 2000. A Practical Approach to Creating Precise and
     Detailed 3D Models from Single and Multiple Views, The XIXth
     Congress of The International Society for Photogrammetry and Remote
     Sensing, Amsterdam, Netherlands, pp. 202-209.
    EOS, 2005. PhotoModeler. EOS Systems Inc, Vancouver, Canada.
    Ermes, P., 2000. Constraints in CAD Models for Reverse Engineering
     Using Photogrammetry, The XIXth Congress of The International
     Society for Photogrammetry and Remote Sensing, Amsterdam,
     Netherlands, pp. 215-221.
    Ermes, P. and Van den Heuvel, F.A., 1998. Measurement of Piping
     Installations with Digital Photogrammetry, ISPRS Commission V
     Symposium on "Real-time Imaging and Dynamic Analysis", Hakodate,
     Japan, pp. 217-220.
    Ermes, P., van den Heuvel, F.A. and Vosselman, G., 1999. A
     Photogrammetric Measurement Method Using CSG Models, IAPRS, ISPRS
     Workshop "Measurements Project Modeling and Documentation in
     architecture and Industry", pp. 36-42.
    Fischer, A., Kolbe, T.H. and Lang, F., 1999. On The Use of
     Geometric and Semantic Models for Component-based Building
     Reconstruction. In: W. Förstner, C.-E. Liedtke and J. Bückner
     (Editors), Smati '99 Workshop, Bonn, pp. 101-119.
    Förstner, W., 1994. A Framework for Low Level Feature Extraction.
     In: J.O. Eklundh (Editor), Computer Vision. Springer-Verlag,
     Berlin, pp. 383-394.
    Förstner, W., 1999. 3D-City Models: Automatic and Semiautomatic
     Acquisition Methods. In: D. Fritsch and R. Spiller (Editors),
     Photogrammetric Week '99. Wichmann, Stuttgart, pp. 291-304.
    Förstner, W. and Gülch, E., 1999. Automatic Orientation and
     Recognition in Highly Structured Scenes. ISPRS Journal of
     Photogrammetry and Remote Sensing, 54: 23-34.
    Forkert, G., 1996. Image Orientation Exclusively Based on Free-form
     Tie Curves, The XVIIIth Congress of The International Society for
     Photogrammetry and Remote Sensing, Vienna, Austria, pp. 196-201.
    Fritsch, D., 1999. Virtual Cities and Landscape Models - What Has
     Photogrammetry to Offer? In: D. Fritsch and R. Spiller (Editors),
     Photogrammetric Week '99. Wichmann Verlag, Stuttgart, Germany,
     pp.3-14.
    Fryer, J.G. and Goodin, D.J., 1989. In-Flight Aerial Camera
     Calibration from Photography of Linear Features. Photogrammetric
     Engineering & Remote Sensing, 55(12): 1751-1754.
    Fua, P., and Leclerc, Y., 1990. Model driven Edge Detection,
     Machine Vision and Application, 3(1): 45-56.
    Fuchs, C. and Förstner, W., 1995. Polymorphic Grouping for Image
     Segmentation, The 5th ICCV'95. IEEE Computer Society Press, Boston,
     pp.175-182.
    Grün, A., 1997. Automation in Building Reconstruction, Photogrammetric
     Week '97. Herbert Wichmann Verlag, Stuttgart, pp. 175-188.
    Grün, A., 2000. Semi-automated Approaches to Site Recording and
     Modeling, The XIXth Congress of The International Society for
     Photogrammetry and Remote Sensing, Amsterdam, Netherlands,
     pp.309-318.
    Grün, A., 2001. Cities from the Sky - Photogrammetric Modeling of
     CyberCity is Coming of Age. GeoInformatics, 4(10): 30-33.
    Grün, A. and Dan, H., 1997. TOBAGO - A Topology Building for the
     Automated Generation of Building Models. In: A. Grün, E.P.
     Baltsavias and O. Henricsson (Editors), Automatic Extraction of
     Man-Made Objects from Aerial and Space Images, Monte Verita,
     pp.149-160.
    Grün, A., Steidler, F. and Wang, X., 2002. Generation and
     Visualization of 3D-city and Facility Models Using CyberCity
     Modeler, Map Asia, Softcopy(CD-ROM).
    Grün, A. and Wang, X., 1999. CyberCity Modeler, A Tool for
     Interactive 3-D City Model Generation. In: D. Fritsch and R. Spiller
     (Editors), Photogrammetric Week '99. Wichmann Verlag, Stuttgart,
     pp.317-327.
    Gülch, E., 1996. Extraction of 3D Objects from Aerial Photographs.
     Grant 50 TT 9536, BMBF/DARA GmbH, Bonn.
    Gülch, E., 1997. Application of Semi-Automatic Building Acquisition.
     In: A. Grün, E.P. Baltsavias and O. Henricsson (Editors),
     Automatic Extraction of Man-Made Objects from Aerial and Space
     Images. Birkhauser Verlag, Monte Verita, pp. 129-138.
    Gülch, E., 2000. Virtual Cities from Digital Imagery. Photogrammetric
     Record, 16(96): 893-903.
    Gülch, E., Müller, H., Läbe, T. and Ragia, L., 1998. On The
     Performance of Semi-automatic Building Extraction, ISPRS
     Commission III Symposium on Object Recognition and Scene
     Classification from Multispectral and Multisensor Pixels, Columbus,
     Ohio, USA, Softcopy.
    Haala, N., 1995. 3D Building Reconstruction Using Linear Edge
     Segments. In: D. Fritsch and D. Hobbie (Editors), Photogrammetric
     Week '95. Herbert Wichmann Verlag, Heidelberg, Germany, pp. 19-28.
    Haala, N., Böhm, J. and Kada, M., 2002. Processing of 3D Building
     Models for Location Aware Applications, ISPRS Commission III
     Symposium, Graz, Austria, pp. 138-143.
    Haala, N. and Brenner, C., 1997. Interpretation of Urban Surface
     Models Using 2D Building Information. In: A. Grün, E.P. Baltsavias
     and O. Henricsson (Editors), Automatic Extraction of Man-Made
     Objects from Aerial and Space Images. Birkhauser Verlag, Monte
     Verita, pp. 213-222.
    Haala, N. and Brenner, C., 1999. Virtual City Models from Laser
     Altimeter and 2D Map Data. Photogrammetric Engineering & Remote
     Sensing, 65(7): 787-795.
    Haala, N., Brenner, C. and Anders, K.-H., 1998a. 3D Urban GIS
     from Laser Altimeter and 2D Map Data. In: T. Schenk and A.F.
     Habib (Editors), ISPRS Commission III Symposium on Object
     Recognition and Scene Classification from Multispectral and
     Multisensor Pixels, Columbus, Ohio, USA, pp. 339-346.
    Haala, N., Brenner, C. and Staetter, C., 1998b. An Integrated System
     for Urban Model Generation, ISPRS Congress Commission II Symposium,
     Cambridge, UK, pp. 96-103.
    Haala, N. and Hahn, M., 1995. Data Fusion for the Detection and
     Reconstruction of Buildings. In: A. Grün, O. Kübler and P. Agouris
     (Editors), Automatic Extraction of Man-Made Objects from Aerial and
     Space Images. Birkhäuser Verlag, Berlin, pp. 211-220.
    Haralick, R.M. and Cho, Y.H., 1984. Solving Camera Parameters from
     the Perspective Projection of a Parameterized Curve. Pattern
     Recognition, 17(6): 637-645.
    Hendrickx, M., Vandekerckhove, J., Frere, D., Moons, T. and van Gool,
     L., 1997. 3D Reconstruction of House Roofs from Multiple Aerial
     Images of Urban Areas, International Archives of Photogrammetry and
     Remote Sensing. ISPRS, Columbus, Ohio, USA, pp. 88-94.
    Henricsson, O., 1996. Analysis of Image Structures using Color
     Attributes and Similarity Relations, Swiss Federal Institute of
     Technology (ETH), Zurich, 124 pages.
    Henricsson, O., Bignone, F., Willuhn, W., Ade, F., Kübler, O.,
     Baltsavias, E., Mason, S. and Grün, A., 1996. Project Amobe:
     Strategies, Current Status, and Future Work, The XVIIIth Congress
     of The International Society for Photogrammetry and Remote Sensing,
     Vienna, Austria, pp. 321-330.
    Heuel, S. and Förstner, W., 2001. Matching, Reconstructing and
     Grouping 3D Lines from Multiple Views Using Uncertain Projective
     Geometry, IEEE Computer Society Conference on Computer Vision and
     Pattern Recognition, Hawaii, USA, pp. 1-8.
    Holland, J. H., 1973. Genetic Algorithms and the Optimal
     Allocations of Trials. SIAM Journal of Computing, 2(2): 88-105.
    Hrabacek, J. and van den Heuvel, F.A., 2000. Weighted Geometric
     Objects Constraints Integrated in a Line-Photogrammetric Bundle
     Adjustment, The XIXth Congress of The International Society for
     Photogrammetry and Remote Sensing, Amsterdam, Netherlands,
     pp.380-387.
    Hsiao, H.-W. and Wong, K.W., 1999. Automatic Matching of
     Buildings and Corners. Photogrammetric Engineering & Remote
     Sensing, 65(7): 803-810.
    Jaw, J.J., 1998. Simultaneous Determination of Exterior
     Orientation and Terrain Surface from Aerial Imagery and
     Airborne Laser Scanning, International Archives of
     Photogrammetry and Remote Sensing, XXXII, Columbus, Ohio,
     USA, pp.52-57.
    Kada, M., 2002. Automatic Generalisation of 3D Building Models,
     Proceedings of the Joint International Symposium on Geospatial
     Theory, Processing and Applications, Ottawa, Canada, Softcopy.
    Läbe, T. and Gülch, E., 1998. Robust Techniques for Estimating
     Parameters of 3D Building Primitives, ISPRS Commission II
     Symposium, Cambridge, UK, pp.169-176.
    Lang, F. and Förstner, W., 1996. 3D-City Modeling with a Digital
     One-eye Stereo System, International Archives of Photogrammetry and
     Remote Sensing, Vienna, Austria, pp. 415-420.
    Lang, F., Löcherbach, T. and Schickler, W., 1995. A One-eye Stereo
     System for Semi-automatic 3D-building Extraction. Geomatics Info
     Magazine: 1-4.
    Lee, S.H. and Leou, J.J., 1994. A Dynamic Programming Approach
     to Line Segment Matching in Stereo Vision. Pattern Recognition,
     27(8): 961-986.
    Li, D. and Zhou, G., 1994. CAD-based Line Photogrammetry for
     Automatic Measurement and Reconstruction of Industrial Objects,
     ISPRS Commission V Symposium on Close Range Techniques and
     Machine. RICS Books, Melbourne, Australia, pp. 231-240.
    Liu, Y. and Huang, T.S., 1991. Determining Straight
     Line Correspondences from Intensity Images. Pattern Recognition,
     24(6): 489-504.
    Lowe, D.G., 1991. Fitting Parameterized Three-Dimensional Models to
     Images. IEEE Transactions on Pattern Analysis and Machine
     Intelligence, 13(5): 441-450.
    Maas, H.-G., 1999. Fast Determination of Parametric House Models from
     Dense Airborne Laserscanner Data, ISPRS Workshop on Mobile Mapping
     Technology, Bangkok, Thailand, pp. 1-6.
    McIntosh, J.H. and Mutch, K.M., 1988. Matching Straight Lines.
     Computer Graphics and Image Processing(43): 386-408.
    Medioni, G. and Nevatia, R., 1984. Matching Images Using Linear
     Features. IEEE Transactions on Pattern Analysis and Machine
     Intelligence, 6(6): 675-685.
    Mohan, R. and Nevatia, R., 1989. Using Perceptual Organization to
     Extract 3-D Structures. IEEE Transactions on Pattern Analysis and
     Machine Intelligence, 11(11): 1121-1139.
    Mulawa, D.C. and Mikhail, E.M., 1988. Photogrammetric Treatment of
     Linear Features, International Archives of Photogrammetry and Remote
     Sensing, Washington DC, USA, pp. 383-393.
    Niederöst, M., 2000. Detection and Reconstruction of Buildings for A
     3-D Landscape Model of Switzerland, UM3/2000 Workshop, Tokyo, Japan,
     Softcopy.
    Noronha, S. and Nevatia, R., 1997. Detection and Description of
     Buildings from Multiple Aerial Images., IEEE Conference on Computer
     Vision and Pattern Recognition, Puerto Rico, pp. 588-594.
    Park, H.J. and Zimmermann, P., 2000. Colour Image Matching for DTM
     Generation And House Extraction, International Archives of Photogrammetry
     and Remote Sensing, Amsterdam, Netherlands, XXXIII, pp.697-704.
    Petsa, E. and Patias, P., 1994a. Formulation and assessment of
     straight line-based algorithms for digital photogrammetry.
     International Archives of Photogrammetry and Remote Sensing,
     30(5): 310-317.
    Petsa, E. and Patias, P., 1994b. Sensor Attitude Determination Using
     Linear Features. International Archives of Photogrammetry and Remote
     Sensing, 30(1): 62-70.
    Rau, J.-Y., 2002. Geometrical Building Modeling and Its Application to
     the Ortho-rectification for Aerial Images. Doctoral Dissertation,
     National Central University, Chungli, Taiwan, 104 pages.
    Rau, J.-Y. and Chen, L.-C., 2001. Semi-Automatic Approach for
     Building Reconstruction Using SPLIT-MERGE-SHAPE Method, Proceedings
     of the 22nd Asian Conference on Remote Sensing. Singapore,
     pp.249-255.
    Rottensteiner, F., 2000. Semi-Automatic Building Reconstruction
     Integrated in Strict Bundle Block Adjustment, International
     Archives of Photogrammetry and Remote Sensing Amsterdam,
     Netherlands, XXXIII, pp.461-468.
    Schindler, K. and Bauer, J., 2003. A Model-Based Method For Building
     Reconstruction, ICCV Workshop on Higher-Level Knowledge in 3D
     Modeling and Motion, Nice, France, Softcopy(CD-ROM).
    Schwermann, R., 1994. Automatic image orientation and object
     reconstruction using straight lines in close- range photogrammetry.
     International Archives of Photogrammetry and Remote Sensing, 30(5):
     349-356.
    Sequeira, V., Ng, K., Wolfart, E., Goncalves, J.G.M. and Hogg, D.,
     1999. Automated Reconstruction of 3D Models from Real Enviroments.
     ISPRS Journal of Photogrammetry and Remote Sensing(54): 1-22.
    Sester, M. and Förstner, W., 1989. Object Location Based on Uncertain
     Models, Mustererkennung 1989, Informatik Fachberichte 219,
     Springer-Verlag, pp. 457-464.
    ShapeQuest, 2005. ShapeCapture. ShapeQuest Inc., USA.
    Shufelt, J.A., 1999. Performance Evaluation and Analysis of Monocular
     Building Extraction From Aerial Imagery. IEEE Transactions on
     Geoscience and Remote Sensing, 21(4): 311-326.
    Smith, M.J. and Park, D.W.G., 2000. Absolute and Exterior Orientation
     Using Linear Features, The XIXth Congress of The International
     Society for Photogrammetry and Remote Sensing, Amsterdam,
     Netherlands, pp.850-857.
    Suveg, I. and Vosselman, G., 2000a. 3D Reconstruction of
     Building Models, The XIXth Congress of The International
     Society for Photogrammetry and Remote Sensing, Amsterdam,
     Netherlands, pp. 538-545.
    Suveg, I. and Vosselman, G., 2000b. Localization of Building
     Corners in Aerial Images, The 6th Conference of ASCI, Lommel,
     Belgium, pp.294-301.
    Tangelder, J.W.H., Ermes, P., Vosselman, G. and van den Heuvel,
     F.A., 1999. Fitting Parameterised Object Models to Gradient
     Images, The 5th Annual Conference of ASCI, Heijden,
     Netherlands, pp. 449-456.
    Tao, C.V., 2000. Semi-Automated Object Measurement Using Multiple-Image
     Matching from Mobile Mapping Image Sequences. Photogrammetric
     Engineering & Remote Sensing, 66(12): 1477-1485.
    Tseng, Y.-H., Lin, C.-C. and Wang, S., 2002. Model-image Fitting
     Using Genetic Algorithms for Building Extraction from Aerial
     Images, The 23rd Asian Conference on Remote Sensing, Kathmandu,
     Nepal, Softcopy(CD-ROM).
    Tseng, Y.-H. and Wang, S., 2000. CAD-Based Photogrammetry for 3D City
     Model Reconstruction, The Congress of The Chinese Geographic
     Information System Society, Tainan, Taiwan, R.O.C., pp. 40-48.
    Tseng, Y.-H. and Wang, S., 2001. Semi-automatic Building Extraction
     by Matching CSG Primitives with Aerial Images, The Asia GIS
     2001, Tokyo, Japan, Softcopy(CD-ROM).
    Tseng, Y.-H. and Wang, S., 2002. Model-based 3D Reconstruction of
     Buildings from Multiple Aerial Images. Geographic Information
     Sciences, 8(1): 16-23.
    Tseng, Y.-H. and Wang, S., 2003. Semiautomated Building Extraction
     Based on CSG Model-Image Fitting. Photogrammetric Engineering &
     Remote Sensing, 69(2): 171-180.
    van den Heuvel, F.A., 1997a. Efficient 3D-Modeling of Buildings
     Using a Priori Geometric Object Information. In: S.F. El-Hakim
     (Editor), SPIE, pp.38-49.
    van den Heuvel, F.A., 1997b. Exterior Orientation Using Coplanar
     Parallel Lines, The 10th Scandinavian Conference on Image
     Analysis, Lappeenranta, Finland, pp. 71-78.
    van den Heuvel, F.A., 1998. 3D Reconstruction from a Single
     Image Using Geometric Constraints. ISPRS Journal of Photogrammetry
     and Remote Sensing, 53(6): 354-368.
    van den Heuvel, F.A., 1999a. Estimation of Interior Orientation
     Parameters from Constraints on Line Measurements in a Single
     Image, IAPRS, ISPRS Workshop "Measurements Project Modeling and
     Documentation in Architecture and Industry", pp. 81-88.
    van den Heuvel, F.A., 1999b. A Line-Photogrammetric Mathematical
     Model for the Reconstruction of Polyhedral Objects. In: S.F.
     El-Hakim (Editor), SPIE, pp.60-71.
    van den Heuvel, F.A., 2000. Trends in CAD-based Photogrammetric
     Measurement, The XIXth Congress of The International Society for
     Photogrammetry and Remote Sensing, Amsterdam, Netherlands,
     pp.852-863.
    Veldhuis, H., 1998. Performance Analysis of Two Fitting Algorithms for
     the Measurement of Parameterised Objects, International Archives of
     Photogrammetry and Remote Sensing, Columbus, Ohio, USA, pp. 400-406.
    Veldhuis, H. and Vosselman, G., 1998. The 3D Reconstruction of
     Straight and Curved Pipes Using Digital Line Photogrammetry.
     ISPRS Journal of Photogrammetry and Remote Sensing, 53(1): 6-16.
    Vosselman, G. and Haralick, R.M., 1996. Performance Analysis of
     Line and Circle Fitting in Digital Images, The Workshop on
     Performance Characteristics of Vision Algorithms, Cambridge, UK,
     pp.1-24.
    Vosselman, G., 1998. Interactive Alignment of Parameterised Object
     Models to Images, International Archives of Photogrammetry and
     Remote Sensing, Columbus, Ohio, USA, pp. 272-278.
    Vosselman, G., 1999. 3D Measurements in Images Using CAD Models,
     The 5th Annual Conference of ASCI, Heijden, Netherlands,
     pp.449-456.
    Vosselman, G. and Veldhuis, H., 1999. Mapping by Dragging and
     Fitting of Wire-Frame Models. Photogrammetric Engineering &
     Remote Sensing, 65(7): 769-776.
    Vosselman, G. and Tangelder, J.W.H., 2000. 3D Reconstruction of
     Industrial Installations by Constrained Fitting of CAD Models
     to Images, Mustererkennung 2000. Informatik Aktuell. Springer
     Verlag, pp. 285-292.
    Wang, S. and Tseng, Y.-H., 2001. On the Accuracy Assessment of
     Least-Squares Model-image Fitting for Building Extraction from Aerial
     Images, The 22nd  Asian Conference on Remote Sensing, Singapore,
     pp.1085-1090.
    Wang, S. and Tseng, Y.-H., 2002. Image Orientation by Fitting Line
     Segments to Edge Pixels, The 23rd Asian Conference on Remote
     Sensing, Kathmandu, Nepal, Softcopy(CD-ROM).
    Wang, S. and Tseng, Y.-H., 2004a. Least-squares Model-image
     Fitting for Building Extraction from Aerial Images. Asian Journal
     of Geoinformatics, 4(4): 3-12.
    Wang, S. and Tseng, Y.-H., 2004b. Semi-automated CSG Model-based
     Building Extraction from Photogrammetric Images, International
     Archives of Photogrammetry and Remote Sensing, Istanbul, Turkey,
     Softcopy(DVD-ROM).
    Weinhaus, F.M. and Devarajan, V., 1997. Texture Mapping 3D Models of
     Real-world Scenes. ACM Computing Surveys, 29(4): 325-365.
    Zalmanson, G.H., 2000. Hierarchical Recovery of Exterior
     Orientation from Parametric and Natural 3-D Curves, The XIXth
     Congress of the International Society for Photogrammetry and
     Remote Sensing, Amsterdam, Netherlands, pp. 610-617.
    Zhang, Z. and Faugeras, O.D. (Editors), 1992. Finding Clusters
     and Planes from 3D Line Segments with Application to 3D Motion
     Determination. Lecture Notes in Computer Science, pp. 227-236.
    Zhou, G. and Li, D., 2001. CAD-Based Object Reconstruction Using Line
     Photogrammetry for Direct Interaction between GEMS and a
     Vision System. Photogrammetric Engineering & Remote Sensing,
     67(1): 107-116.
    Zielinski, H., 1992. Line photogrammetry with multiple image.
     International Archives of Photogrammetry and Remote Sensing,
     29(3): 669-676.
    Zimmermann, P., 2000. A New Framework for Automatic Building
     Detection Analysing Multiple Cue Data, International Archives of
     Photogrammetry and Remote Sensing, Amsterdam, Netherlands, XXXIII,
     pp.1063-1070.
    王正忠, 2002. 以近景攝影測量進行模型式建物重建. 碩士論文, 國立成功大學,
     台南市, 93頁.
    周宏達, 2001. 以最小二乘法進行參數式模型與影像之最佳套合. 碩士論文, 國
     立成功大學, 台南市, 172頁.
    周宏達, 曾義星及王聖鐸, 2001. 最小二乘CSG模型與影像套合. 航測及遙測學
     刊, 6(3): 57-73.
    林文棋, 2001. 半自動化建物萃取之建物模型建置與操作. 碩士論文, 國立成功
     大學, 台南市, 114頁.
    林文棋, 曾義星及王聖鐸, 2001. 半自動化建物萃取之建物模型建置與操作. 航
     測及遙測學刊, 6(3): 35-55.
    林志交, 2002. 基因演算法於模型影像套合計算之應用. 碩士論文, 國立成功大
     學, 台南市, 107頁.
    黃文利, 2001. 近景攝影測量應用於三維建物模型側面影像敷貼之研究. 碩士論
     文, 國立成功大學, 台南市, 97頁.
    傅秉綱, 2002. 三維建物模型表面影像敷貼自動化之研究. 碩士論文, 國立成功
     大學, 台南市, 83頁.
    傅秉綱, 曾義星及王聖鐸, 2002. 三維建物模型表面敷貼自動化之研究, 第二十
     一屆測量學術及應用研討會論文集, 新竹, pp. 75-82.
    曾義星及王聖鐸, 2000. 結合CAD與攝影測量之三維城市模型建置, 2000年中華地
     理資訊學會學術研討會, 台南, pp. 40-48.
    劉彥秀, 2003. 最小二乘模型與影像套合之後續探討. 碩士論文, 國立成功大學,
     台南市,146頁.

    下載圖示 校內:立即公開
    校外:2005-09-06公開
    QR CODE