| 研究生: |
林炫均 Lin, Hsuan-Chun |
|---|---|
| 論文名稱: |
人類血纖維蛋白溶酶原對於動脈粥狀硬化之功能研究 Study the Function of Kringle Proteins in Atherosclerosis |
| 指導教授: |
施桂月
Shi, Guey-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 動脈粥狀硬化 、血纖維蛋白溶酶原 |
| 外文關鍵詞: | atherosclerosis, kringle |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管內皮細胞的活化在動脈粥狀硬化的生成與血管斑塊的穩定度有舉足輕重的影響。最近的臨床報告指出利用抗血管新生素有效的劑量可以有效的抑制動脈粥狀硬化血管創傷中的斑塊形成與前期發炎反應。在人類血纖維蛋白溶酶原中已經被發現有五個相似的片段。根據我們之前的研究,利用突變的方式在含有人類血纖維蛋白溶酶原五個片段上除去兩個糖化位置與增強在第五個片段上的離氨基酸吸附能力可以有效的增強人類血纖維蛋白溶酶原片段抑制血管新生的能力。我們計畫使用自發性動脈硬化缺陷小鼠與頸動脈結紮手術以探討人類血纖維蛋白溶酶原片段對於動脈粥狀硬化的功能。在自發性動脈硬化缺陷小鼠實驗中,我們發現,小鼠接受四星期的持續性皮下注射人類血纖維蛋白溶酶原片段或突變後的人類血纖維蛋白溶酶原片段可以有效的抑制小鼠主動脈血管斑塊的形成。同時在頸動脈結紮手術實驗中也發現這些人類血纖維蛋白溶酶原片段可以有效的抑制血管栓塞。為了進一步研究我們在動物實驗上觀察到的結果,我們利用腫瘤壞死因子刺激人類臍帶內皮細胞使其表現出細胞間粘附分子-1與血管黏著分子-1,模擬出動脈粥狀硬化的前期發炎反應。並使用前處理的方式處理人類血纖維蛋白溶酶原片段,結果發現人類血纖維蛋白溶酶原片段可以抑制前期發炎反應中的細胞間粘附分子-1與血管黏著分子-1的表現。且經由突變後的人類血纖維蛋白溶酶原片段具有較好的效果。由動物實驗結果和細胞實驗結果指出,人類血纖維蛋白溶酶原片段可能藉由抑制動脈硬化前期發炎反應中細胞間粘附分子-1與血管黏著分子-1的表現,進而降低小鼠體內動脈粥狀硬化的程度。並且這些突變或許可為人類血纖維蛋白溶酶原片段在動脈粥狀硬化上的利用開啟新的方向。
Activation of vascular endothelial cells (ECs) plays an important role in atherogenesis and plaque instability. Recent clinical report indicated that potential treatment of angiostatin (kringle 1-4) could reduce the plaque formation and proinflammatory effect in atherosclerotic lesions. Kringle 1-5 (K1-5) is consisted of the first five kringle domains of plasminogen. According to our previous study, the mutation had been created at the potential glycosylation sites and the Lys binding site at kringle 5, which was denominated as K1-5N289A/T346A/L532R. The K1-5N289A/T346A/L532R was demonstrated to be more potent than angiostatin in inhibition of angiogenesis and atherosclerosis. We used the apolipoprotein E (ApoE) deficient mice model and the ligation model to test the function of kringle protein in atherogenesis. In apoE deficient mice that received K1-5 or K1-5N289A/T346A/L532R injection for 4 weeks, and the lesion area in aorta was notably decreased. In the ligation model, the left common carotid arteries of C57BL/6 mice were ligated near the carotid bifurcation and then injected with K1-5 or K1-5N289A/T346A/L532R for 4 weeks. The carotid neointima formation in the C57BL/6 mice was decreased by treatment of K1-5N289A/T346A/L532R. We designed to treat K1-5 or K1-5N289A/T346A/L532R on HUVECs for 30 minutes before treatment of TNF-alpha for 24 hours to explore the mechanism in vitro. The results showed that K1-5N289A/T346A/L532R was more potent than K1-5 in reducing the intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression. Based on these observations, K15 and K1-5N289A/T346A/L532R might inhibit the proinflammatory effect and plaque formation in vivo through inhibition of ICAM-1, VCAM-1 expression in ECs, and we found that K1-5N289A/T346A/L532R had more effect than K1-5 in inhibiting proinflammation of atherogenesis. In the future, we will investigate the mechanism of how K1-5 and K1-5N289A/T346A/L532R inhibit the expression of ICAM-1 and VCAM-1 in ECs. The increase of Lys binding ability and the altered glycosylation sites of mutant K1-5 proteins may provide a new strategy in improving the anti-atherosclerotic function of K1-5.
1.Ross R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999;340(2):115-126.
2.Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868-874.
3.Gotto AM, Jr. Role of C-reactive protein in coronary risk reduction: focus on primary prevention. Am. J. Cardiol. 2007;99(5):718-725.
4.Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285-1295.
5.Simionescu M. Implications of early structural-functional changes in the endothelium for vascular disease. Arteriosclerosis, thrombosis, and vascular biology. 2007;27(2):266-274.
6.Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005;352(16):1685-1695.
7.Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J. Exp. Med. 2001;194(2):205-218.
8.Calabro P, Samudio I, Safe SH, Willerson JT, Yeh ET. Inhibition of tumor-necrosis-factor-alpha induced endothelial cell activation by a new class of PPAR-gamma agonists. An in vitro study showing receptor-independent effects. J. Vasc. Res. 2005;42(6):509-516.
9.Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arteriosclerosis, thrombosis, and vascular biology. 2005;25(1):29-38.
10.Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arteriosclerosis, thrombosis, and vascular biology. 2006;26(8):1702-1711.
11.Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb. 2003;10(2):63-71.
12.Kraiss LW, Kirkman TR, Kohler TR, Zierler B, Clowes AW. Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler. Thromb. 1991;11(6):1844-1852.
13.Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N. Engl. J. Med. 1994;330(20):1431-1438.
14.Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. The Journal of clinical investigation. 1994;94(6):2493-2503.
15.Li YH, Hsieh CY, Wang DL, Chung HC, Liu SL, Chao TH, Shi GY, Wu HL. Remodeling of carotid arteries is associated with increased expression of thrombomodulin in a mouse transverse aortic constriction model. Thrombosis and haemostasis. 2007;97(4):658-664.
16.Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol. Res. 2004;30(1):73-80.
17.Liu SL, Li YH, Shi GY, Chen YH, Huang CW, Hong JS, Wu HL. A novel inhibitory effect of naloxone on macrophage activation and atherosclerosis formation in mice. J. Am. Coll. Cardiol. 2006;48(9):1871-1879.
18.O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315-328.
19.Gately S, Twardowski P, Stack MS, Patrick M, Boggio L, Cundiff DL, Schnaper HW, Madison L, Volpert O, Bouck N, Enghild J, Kwaan HC, Soff GA. Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res. 1996;56(21):4887-4890.
20.Soff GA. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev. 2000;19(1-2):97-107.
21.Machovich R, Owen WG. An elastase-dependent pathway of plasminogen activation. Biochemistry. 1989;28(10):4517-4522.
22.Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, Soff GA. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc. Natl. Acad. Sci. U. S. A. 1997;94(20):10868-10872.
23.Hanford HA, Wong CA, Kassan H, Cundiff DL, Chandel N, Underwood S, Mitchell CA, Soff GA. Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res. 2003;63(14):4275-4280.
24.Ji WR, Castellino FJ, Chang Y, Deford ME, Gray H, Villarreal X, Kondri ME, Marti DN, Llinas M, Schaller J, Kramer RA, Trail PA. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J. 1998;12(15):1731-1738.
25.Cao R, Wu HL, Veitonmaki N, Linden P, Farnebo J, Shi GY, Cao Y. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. U. S. A. 1999;96(10):5728-5733.
26.Pirie-Shepherd SR. Role of carbohydrate on angiostatin in the treatment of cancer. J. Lab. Clin. Med. 1999;134(6):553-560.
27.Davidson DJ, Castellino FJ. Oligosaccharide structures present on asparagine-289 of recombinant human plasminogen expressed in a Chinese hamster ovary cell line. Biochemistry (Mosc). 1991;30(3):625-633.
28.Hayes ML, Castellino JF. Carbohydrate of the human plasminogen variants. I. Carbohydrate composition, glycopeptide isolation, and characterization. J. Biol. Chem. 1979;254(18):8768-8771.
29.Spiro RG. Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell. Mol. Life Sci. 2004;61(9):1025-1041.
30.Chang Y, Mochalkin I, McCance SG, Cheng B, Tulinsky A, Castellino FJ. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry (Mosc). 1998;37(10):3258-3271.
31.Mathews II, Vanderhoff-Hanaver P, Castellino FJ, Tulinsky A. Crystal Structures of the Recombinant Kringle 1 Domain of Human Plasminogen in Complexes with the Ligands ε-Aminocaproic Acid and trans-4-(Aminomethyl)cyclohexane-1-carboxylic Acid. Biochemistry (Mosc). 1996;35(8):2567-2576.
32.Karen S. Moulton KV, David Zurakowski, Mohsin Soliman, Catherine Butterfield, Erik Sylvin,, Kin-Ming Lo SG, Kashi Javaherian, and Judah Folkman. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. PNAS. 2003;100(8):5.
33.Chavakis T, Athanasopoulos A, Rhee JS, Orlova V, Schmidt-Woll T, Bierhaus A, May AE, Celik I, Nawroth PP, Preissner KT. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2005;105(3):1036-1043.
34.Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985;57(1):65-73.
35.Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 1992;89(10):4471-4475.
36.Jawien J, Nastalek P, Korbut R. Mouse models of experimental atherosclerosis. J. Physiol. Pharmacol. 2004;55(3):503-517.
37.Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. 1994;14(1):133-140.
38.Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71(2):343-353.
39.Berk BC, Korshunov VA. Genetic determinants of vascular remodelling. Can. J. Cardiol. 2006;22 Suppl B:6B-11B.
40.Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circulation research. 1993;73(5):792-796.
41.Cercek B, Yamashita M, Dimayuga P, Zhu J, Fishbein MC, Kaul S, Shah PK, Nilsson J, Regnstrom J. Nuclear factor-kappaB activity and arterial response to balloon injury. Atherosclerosis. 1997;131(1):59-66.
42.Chyu KY, Dimayuga P, Zhu J, Nilsson J, Kaul S, Shah PK, Cercek B. Decreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice. Circulation research. 1999;85(12):1192-1198.
43.Golino P, Ambrosio G, Pascucci I, Ragni M, Russolillo E, Chiariello M. Experimental carotid stenosis and endothelial injury in the rabbit: an in vivo model to study intravascular platelet aggregation. Thrombosis and haemostasis. 1992;67(3):302-305.
44.Burchenal JE, Deible CR, Deglau TE, Russell AJ, Beckman EJ, Wagner WR. Polyethylene glycol diisocyanate decreases platelet deposition after balloon injury of rabbit femoral arteries. J. Thromb. Thrombolysis. 2002;13(1):27-33.
45.Ueno H, Kanellakis P, Agrotis A, Bobik A. Blood flow regulates the development of vascular hypertrophy, smooth muscle cell proliferation, and endothelial cell nitric oxide synthase in hypertension. Hypertension. 2000;36(1):89-96.
46.Korshunov VA, Berk BC. Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler. Thromb. Vasc. Biol. 2003;23(12):2185-2191.
校內:2106-07-26公開