| 研究生: |
黃馨瑩 Huang, Hsin-Ying |
|---|---|
| 論文名稱: |
NT-3 抑制小膠質細胞活化分子機制之探討 Study of molecular mechanisms for NT-3-induced microglial deactivation |
| 指導教授: |
曾淑芬
Tzeng, Shun-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 神經滋養因子-3 、小膠質細胞 |
| 外文關鍵詞: | neurotrophin-3, microglia |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小膠質細胞(microglia)是中樞神經系統的一種免疫巨噬細胞(macrophage),當中樞神經系統受損或發生神經退化性疾病,小膠質細胞會被活化,產生大量的前發炎因子(proinflammatory mediators),例如,一氧化氮(NO)、腫瘤壞死因子-α(TNF-α)及介白質素-1β(IL-1β)等等,擴大發炎反應,影響神經再生。神經滋養因子-3(NT-3)為一種神經滋養因子(neurotrophin),對於神經細胞存活及中樞神經系統發育扮演重要角色。受損的中樞神經系統中,活化的小膠質細胞會產生NT-3,同時也表現NT-3的受體,Trk C及p75NTR,然而,NT-3對活化小膠質細胞的作用卻未被深入探討。本研究中,藉由細菌脂多醣(LPS)活化BV2細胞株(一種小膠質細胞細胞株)及初級小膠質細胞,以探討NT-3對於小膠質細胞活化情形的影響。結果顯示以LPS活化小膠質細胞前24小時先處理NT-3,可顯著抑制誘導型一氧化氮合成酵素(iNOS)表現量、TNF-α及IL-1β產量;若NT-3與LPS同時處理或於LPS後處理小膠質細胞,則對小膠質細胞的活化沒有顯著的影響。進一步以Trk C的抑制劑K252a或MAPK的抑制劑U0126處理細胞,則前處理NT-3喪失對iNOS表現量的抑制效果;此外,NT-3前處理亦降低LPS誘導的NF-κB活化。推測NT-3經由與Trk C受體的結合,啟動細胞內MAPK訊息傳遞路徑,並抑制NF-κB的活化以降低iNOS及前發炎細胞激素的表現量。本研究結果顯示NT-3可明顯抑制小膠質細胞的活化,因此在中樞神經系統受損後,NT-3的產生不但有助於神經細胞的存活,更可作為一種抗發炎因子減緩損傷處的發炎反應。
Microglia, resident macrophages in the central nervous system (CNS), are activated in many CNS diseases, and act as important regulators for neuropathogenesis via producing proinflammatory mediators, such as nitric oxide (NO), TNF-α and IL-1β. Neurotrophin-3 (NT-3) is a well-known trophic factor for neural survival, development and plasticity. Activated microglia are NT-3-producing cells in the injured CNS, and express its receptor-Trk C and p75NTR. However, little is known about the effect of NT-3 on microglia. In this study, we investigated the effect of NT-3 on mouse microglia cell line (BV2) and primary rat microglia with stimulation of lipopolysaccharide (LPS). We found that 24h pre-treatment with NT-3 significantly suppressed the production of inducible NO synthetase (iNOS), NO, and TNF-α both in LPS-stimulated BV2 and primary rat microglia. Pretreatment with NT-3 also decreased the level of IL-1β in LPS-stimulated primary rat microglia. NT-3 had less effect on the reduction of these proinflammatory mediators when it was added to BV2 and primary microglia cultures either simultaneously with LPS or post LPS treatment. Similar results were found in primary rat microglia. Furthermore, we found that the inhibitory effect NT-3 on the production of microglial iNOS induced by LPS was abolished by K252a (TrkC inhibitor) and U0126 (MAPK inhibitor). Additionally, pretreatment with NT-3 also caused the inhibition of NF-κB activation in LPS-treated microglia. Our results suggest that NT-3 inhibited the production of iNOS and proinflammatory mediators by LPS-treated microglia through TrkC activation, MAPK signaling, and deactivation of NF-κB. Collectively, these results indicated that NT-3 may serve an anti-inflammatory factor to suppress microglial activation.
Agarwal M. L., Taylor W. R., Chernov M. V., Chernova O. B. and Stark G. R. (1998) The p53 network. J. Biol. Chem. 273, 1-4.
Aloisi F. (2001) Immune function of microglia. Glia 36, 165-179.
Aloyz R. S., Bamji S. X., Pozniak C. D., Toma J. G., Atwal J., Kaplan D. R. and Miller F. D. (1998) p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J. Cell. Biol. 143, 1691-1703.
Bao F., Liu D. (2003) Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience 116, 59-70.
Barron K. D. (1995) The microglial cell. A historical review. J. Neurol. Sci. 134, 57-68.
Bergmann I., Priestley J. V., McMahon S. B., Brocker E. B., Toyka K. V. and Koltzenburg M. (1997) Analysis of cutaneous sensory neurons in transgenic mice lacking the low affinity neurotrophin receptor p75. Eur. J. Neurosci. 9, 18-28.
Bezzi P., Domercq M., Brambilla L., Galli R., Schols D., De Clercq E., Vescovi A., Bagetta G., Kollias G., Meldolesi J. and Volterra A. (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702-710.
Birren S. J., Lo L. and Anderson D. J. (1993) Sympathetic neuroblasts undergo a developmental switch in trophic dependence. Development 119, 597-610.
Blasi E., Barluzzi R., Bocchini V., Mazzolla R. and Bistoni F. (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27, 229-237.
Brennan C., Rivas-Plata K. and Landis S. C. (1999) The p75 neurotrophin receptor influences NT-3 responsiveness of sympathetic neurons in vivo. Nat. Neurosci. 2, 699-705.
Chan A., Seguin R., Magnus T., Papadimitriou C., Toyka K. V., Antel J. P. and Gold R. (2003) Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia 43, 231-242.
Chao C. C., Hu S., Molitor T. W., Shaskan E. G. and Peterson P. K. (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 149, 2736-2741.
Chao C. C., Hu S., Ehrlich L. and Peterson P. K. (1995) Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav. Immun. 9, 355-365.
Chao M. V. (2003) Neurotrophins and their receptors: a convergence point for many signaling pathways. Nature Rev. Neurosci. 4, 299-309.
Corbit K. C., Foster D. A. and Rosner M. R. (1999) Protein kinase Cdelta mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol. Cell Biol. 19, 4209-4218.
Cuadros M. A. and Navascues J. (1998) The origin and differentiation of microglial cells during development. Prog. Neurobiol. 56, 173-189.
Dhib-Jalbut S., Gogate N., Jiang H., Eisenberg H. and Bergey G. (1996) Human microglia activate lymphoproliferative responses to recall viral antigens. J. Neuroimmunol. 65, 67–73.
Datta S. R., Brunet A. and Greenberg M. E. (1999) Cellular survival: a play in three Akts. Genes Dev. 13, 2905-2927.
Dehmer T., Lindenau J., Haid S., Dichgans J. and Schulz J. B. (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem. 74, 2213-2216.
Delgado M. (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia. Biochem. Biophys. Res. Commun. 293, 771-776.
Dougherty K. D., Dreyfus C. F. and Black I. B. (2000) Brain-Derived Neurotrophic Factor in Astrocytes, Oligodendrocytes, and Microglia/Macrophages after Spinal Cord Injury. Neurobiol. Dis. 7, 574–585.
Elkabes S., DiCicco-Bloom E. M. and Black I. B. (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16, 2508-2521.
Elkabes S., Peng L. and Black I. B. (1998) Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J. Neurosci. Res. 54, 117-122.
Ernfors P., Lee K. F. and Jaenisch R. (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147-150.
Ernfors P., Van De Water T., Loring J. and Jaenisch R. (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14, 1153-1164. Erratum. Neuron 15, 739.
Fariñas I., Yoshida C. K., Backus C. and Reichardt L. F. (1996) Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065-1078.
Gebicke-Haerter P. J. (2001) Microglia in neurodegeneration: molecular aspects. Microsc. Res. Tech. 54, 47-58.
Grill R., Murai K., Blesch A., Gage F. H. and Tuszynski M. H. (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560-5572.
Hamanoue M., Middleton G., Wyatt S., Jaffray E., Hay R. T. and Davies A. M. (1999) p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci. 14, 28-40.
Hanisch U. K. (2002) Microglia as a source and target of cytokines. Glia 40, 140-155.
Heese K., Hock C. and Otten U. (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J. Neurochem. 70, 699-707.
Huang E. J. and Reichardt L. F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736.
Jones L. L., Kreutzberg G. W. and Raivich G. (1998) Transforming growth factor beta's 1, 2 and 3 inhibit proliferation of ramified microglia on an astrocyte monolayer. Brain Res. 795, 301-306.
Krogsgaard M., Wucherpfennig K. W., Cannella B., Hansen B. E., Svejgaard A., Pyrdol J., Ditzel H., Raine C., Engberg J., Fugger L. and Canella B. (2000) Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J. Exp. Med. 191, 1395-1412.
Koistinaho M. and Koistinaho J. (2002) Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40, 175-183.
Koshinaga M., Katayama Y., Fukushima M., Oshima H., Suma T. and Takahata T. (2000) Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices. J. Neurotrauma. 17, 185-192.
Kucera J., Ernfors P., Walro J. and Jaenisch R. (1995) Reduction in the number of spinal motor neurons in neurotrophin-3-deficient mice. Neuroscience 69, 321-330.
Kuruvilla R., Ye H., and Ginty D. D. (2000) Spatially and functionally distinct roles of the P13-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27, 499-512.
Ledeboer A., Breve J J., Poole S., Tilders F. J. and Van Dam A. M. (2000) Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30, 134-142.
Lodge P. A. and Sriram S. (1996) Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J. Leukoc. Biol. 60, 502-508.
Lindvall O., Ernfors P., Bengzon J., Kokaia Z., Smith M. L., Siesjo B. K. and Persson H. (1992) Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 in adult rat brain following cerebral ischemia and hypoglycemic coma. Proc.Natl. Acad. Sci. U.S.A. 89, 648-652.
Liu B. and Hong J. S. (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7.
Maggirwar S. B., Sarmiere P. D., Dewhurst S. and Freeman R. S. (1998) Nerve growth factor-dependent activation of NF-kappaB contributes to survival of sympathetic neurons. J. Neurosci. 18, 10356-10365.
Maness L. M., Kastin A. J., Weber J. T., Banks W. A., Beckman B. S. and Zadina J. E. (1994) The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci. Biobehav. Rev. 18, 143-159.
Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J. and Lane T. E. (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol. 151, 2132-2141.
Middleton G., Hamanoue M., Enokido Y., Wyatt S., Pennica D., Jaffray E., Hay R. T. and Davies A. M. (2000) Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons. J. Cell. Biol. 148:325-332.
Mitrovic B., Ignarro L. J., Vinters H. V., Akers M. A., Schmid I., Uittenbogaart C., and Merrill J. E. (1995) Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience 65, 531-539.
Morioka T., Kalehua A. N. and Streit W. J. (1991) The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J. Cereb. Blood Flow Metab. 11, 966-973.
Nakajima K., Kikuchi Y., Ikoma E., Honda S., Ishikawa M., Liu Y. and Kohsaka S. (1998) Neurotrophins regulate the function of cultured microglia. Glia 24, 272-289.
Nakajima K., Honda S., Tohyama Y., Imai Y., Kohsaka S. and Kurihara T. (2001) Neurotrophin secretion from cultured microglia. J. Neurosci. Res. 65, 322-331.
Nakamura Y. (2002) Regulating factors for microglial activation. Biol. Pharm. Bull. 25, 945-953.
Neumann H., Misgeld T., Matsumuro K. and Wekerle H. (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci U S A. 95, 5779-5784.
Nomura Y. (2001) NF-kappaB activation and IkappaB alpha dynamism involved in iNOS and chemokine induction in astroglial cells. Life Sci. 68, 1695-1701.
Rezaie P. and Lantos P. L. (2001) Microglia and the pathogenesis of spongiform encephalopathies. Brain Res. Brain Res. Rev. 35, 55-72.
Rivest S. (2003) Molecular insights on the cerebral innate immune system. Brain Behav. Immun. 17, 13-19.
Roback J. D., Marsh H. N., Downen M., Palfrey H. C. and Wainer B. H. (1995) BDNF-activated signal transduction in rat cortical glial cells. Eur J Neurosci. 7, 849-862.
Rogers J., Luber-Narod J., Styren S. D. and Civin W. H. (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol. Aging 9, 339-349.
Rudge J. S., Alderson R. F., Pasnikowski E., McClain J., Ip N. Y. and Lindsay R. M. (1992) Expression of Ciliary Neurotrophic Factor and the Neurotrophins-Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Neurotrophin 3-in Cultured Rat Hippocampal Astrocytes. Eur. J. Neurosci. 4, 459-471.
Schnell L., Schneider R., Kolbeck R., Barde Y. A. and Schwab M. E. (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170-173.
Singhrao S. K., Neal J. W., Morgan B. P. and Gasque P. (1999) Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 159, 362-376.
von Zahn J., Moller T., Kettenmann H. and Nolte C. (1997) Microglial phagocytosis is modulated by pro- and anti-inflammatory cytokines. Neuroreport. 8, 3851-3856.
Xiao B. G., Bai X. F., Zhang G. X. and Link H. (1997) Transforming growth factor-beta1 induces apoptosis of rat microglia without relation to bcl-2 oncoprotein expression. Neurosci. Lett. 226, 71-74.
Xie Z., Wei M., Morgan T. E., Fabrizio P., Han D., Finch C. E. and Longo V. D. (2002) Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J. Neurosci. 22, 3484-3492.
Ying Z., Roy R. R., Edgerton V. R. and Gomez-Pinilla F. (2003) Voluntary exercise increases neurotrophin-3 and its receptor TrkC in the spinal cord. Brain Res. 987, 93-99.
Yoon S. O., Casaccia-Bonnefil P., Carter B. and Chao M. V. (1998) Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci. 18, 3273-3281.
Zhang J., Geula C., Lu C., Koziel H., Hatcher L. M. and Roisen F. J. (2003) Neurotrophins regulate proliferation and survival of two microglial cell lines in vitro. Exp. Neurol. 183, 469-481.
Zielasek J. and Hartung H. P. (1996) Molecular mechanisms of microglial activation. Adv. Neuroimmunol. 6, 191-222.
Zhou L., Baumgartner B. J., Hill-Felberg S. J., McGowen L. R. and Shine H. D. (2003) Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J. Neurosci. 23, 1424-1431.