| 研究生: |
林宛萱 Lin, Wan-Hsuan |
|---|---|
| 論文名稱: |
原生種蝴蝶蘭染色質甲基轉移酶基因之染色體定位與基因序列分析 Chromosome localization of Chromomethylase gene and sequence analysis on Phalaenopsis species |
| 指導教授: |
吳文鑾
Wu, Wen-Luan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 染色質甲基轉移酶 、螢光原位雜合 、粗絲期 、蝴蝶蘭 |
| 外文關鍵詞: | chromomethylase, fluorescence in situ hybridization, pachytene, Phalaenopsis species |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蝴蝶蘭為花卉產業中具有高度經濟價值的作物,廣泛使用組織培養的方式大量培育分生子代,在組織培養的過程中,可能會藉由甲基化(methylation)改變基因表現,造成體細胞變異(somatic variation),而導致植株型態的變異。甲基轉移酶相關酵素其作用為催化DNA甲基化,依蛋白質結構及作用位置的不同,可進一步將甲基轉移酶相關酵素分為三大基因族:甲基轉移酶(MET)基因族、染色質甲基轉移酶(CMT)基因族及重新發生甲基轉移酶(DRM)基因族。2005年Chen等人從蝴蝶蘭商業品種Phalaenopsis Little Mary選殖出一甲基轉移酶相關基因,由其胺基酸序列之功能區分析發現此基因包含chromodomain,推測此蝴蝶蘭甲基轉移酶相關基因,屬於染色質甲基轉移酶基因族的成員。本實驗室以P. Little Mary PlMET cDNA序列當作探針對實驗室姬蝴蝶蘭BAC基因庫進行篩選,選殖出PeCMT-E07,並以454高通量定序分析,分析結果得到序列長度不同之連續體(contig),以TAIL-PCR方式將兩段比對到部分CMT基因序列之連續體連接。分析來自BAC選殖株得到的CMT 基因序列,共有21個exon,譯碼區為2598 bp可轉譯出866個胺基酸。進一步比較CMT基因在姬蝴蝶蘭與臺灣阿嬤蝴蝶蘭序列上的差異,分別對兩物種進行擴增,分別命名為PeCMT及PaCMT。比對兩者胺基酸序列,相似度高達98.5%,皆具有BAH domain及chromodomain兩個功能區。由分子親緣關係分析顯示蝴蝶蘭CMT基因屬於單子葉CMT基因族群。比較四個不同亞屬原生種蝴蝶蘭兩功能區序列,結果顯示在不同亞屬八個原生種蝴蝶蘭CMT基因功能區胺基酸序列相似度高達95%以上。以PeCMT基因中1.9 kb序列為探針,利用螢光原位雜合技術(fluorescence in situ hybridization, FISH)定位CMT基因在兩種臺灣原生種蝴蝶蘭:姬蝴蝶蘭及臺灣阿嬤蝴蝶蘭染色體分佈位置,結果顯示CMT基因在兩種原生種蝴蝶蘭粗絲期染色體中皆具有單一訊號且位於染色體末端。比對實驗室建立的姬蝴蝶蘭核型,PeCMT基因分佈在第六號染色體長臂距末端1.23 μm。綜合以上研究結果,推測蝴蝶蘭中CMT基因功能區保守性極高,單一的CMT基因訊號可作為辨識姬蝴蝶蘭及臺灣阿嬤蝴蝶蘭單一染色體的專一標誌。
Phalaenopsis orchid is one of the top economical crops in floricultural industry. To propagate massive clones, tissue culture is widely and routinely used. However, some somatic variations were generated through the vegetative propagation process and the changed level of DNA methylation is supposed to be one of the mechanism leading the plant morphology alteration. Methyltransferase plays important roles in DNA methylation and can be further grouped into three families, methyltransferase (MET) family, chromomethylase (CMT) family and de novo methyltransferase (DRM) family, based on their protein structure and function. Chen et al. (2005) have cloned a methyltransferase gene from Phalaenopsis cultivar P. Little Mary and its chromodomain indicates that this gene is a member of CMT family. The cDNA fragment of this gene was used as probe to screen P. equestris BAC library and the CMT gene-containing BAC clone- PeCMT-E07 was further sequenced through 454 pyrosequencing. First, the short sequence derived from 454 pyrosequencing were assembled in two contigs and the two sequenced contigs are linked by using TAIL-PCR. The CMT gene cloned from P. equestris BAC library, PeCMT-E07, had 21 exons and the length of cDNA was 2,598 bp which can be translated into 866 amino acids. In addition, we also cloned this gene from the genomes of two species, P. equestris and P. aphrodite, named as PeCMT and PaCMT. The amino acid sequences between PeCMT and PaCMT show very high identity up to 98.5% and both contain functional domains, BAH domain and chromodomain. Then, the phylogenetic analysis based on amino acid sequences revealed that PeCMT and PaCMT were clustered together with members of CMT family of monocot species. Furthermore, the amino acid sequences of two functional domains, BAH domain and chromodomain, were sequenced and compared among eight Phalaenopsis species belonging to four different subgenera. The functional domain amino acid sequence identities are all over 95% and therefore they are highly conserved among eight Phalaenopsis species. Finally, fluorescence in situ hybridization was applied to elucidate the chromosome location of CMT gene in P. equestris and P. aphrodite using 1.9 kb DNA fragment of CMT as a probe. It showed single signal of CMT on a high-resolution pachytene chromosome of both Phalaenopsis species. According to the known P. equestris karyotype, the PeCMT was speculated to locate on the euchromatin region of the long arm of P. euqetris chromosome 6 and about 1.23μm away from the telemetric end. In conclusion, the functional domains of CMT were highly conserved among Phalaenopsis species, and single locus of CMT can be used as a marker for chromosome identification in Phalaenopsis orchids.
余俊逸 (2006) 蝴蝶蘭DNA甲基化酵素基因之選殖與表現分析。國立屏東科
技大學農園生產系碩士論文。
周筱琦 (2012) 原生種蝴蝶蘭EFS基因之染色體定位與基因序列之分析。國立
成功大學生命科學所碩士論文。
陳其昌、高燕玉 (2002) 染色體螢光原位雜交技術及其在植物遺傳學上的應
用。科學農業,50 (1,2): 67-77。
薛豪彥 (2012) 蘭嶼姬蝴蝶蘭粗絲期染色體螢光原位雜交與核型分析。國立台
灣大學農藝研究所碩士論文。
Abid, G., Muhoviski, Y., Jacquemin, J.M., Mingeot, D., Sassi, K., Toussaint, A. and Baudoin, J.P. (2011) Changes in DNA-methylation during zygotic embryogenesis. Plant Cell Tissue and Organ Culture, 105, 383-393.
Bartee, L., Malagnas, F. and Bender, J. (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes and Development, 15, 1753-1758.
Bednarek, P.T., Orlowska, R., Robert M.R. and Zimny, J. (2007) Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biology, 7,10.
Callebaut, I., Courvalin, J.C. and Mornon, J.P. (1999) The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446, 189-193.
Cao, X., Springer, N., Muszynski, M., Phillips, R., Kaeppler, S. and Jacobsen, S. (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci USA, 97, 4979-4984.
Chen, C.C., Chen, C.M., Hsu, F.C., Wang, C.J., Yang, J.T. and Kao, Y.Y. (2000) The pachytene chromsomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theoretical and Applied Genetics, 101, 30-36.
Chen, T. and Li, E. (2004) Structure and function of eukaryotic DNA Methyltransferases. Current Topics in Developmental Biology, 60, 55-89.
Chen, W.H., Chen, T.M., Fu, Y.M., Hsieh, R.M. and Chen, W.S. (1998) Studies on somaclonal varuation in Phalaenopsis. Plant Cell Reports, 18, 7-13.
Chen, Y.H., Tsai, Y.J., Huang, J.Z. and Chen, F.C. (2005) Transcription analysis of pleoric mutants of Phalaenopsis orchids derived from tissue culture. Cell Research, 15, 639-657.
Eissenberg, J.C. (2001) Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene, 275, 19-29.
Filichkin, S.A. (2004) A novel Endo-Mannanase gene in Tomato LeMAN5 is associated with anther and pollen development. Plant Physiology, 134, 1080-1087.
Finnegan, E.J. and Dennis, E.S. (1993) Isolation and identification by sequence homology of putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Research, 21, 2383-2388.
Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA , 93, 8449-8454.
Gourrierec, J.L., Li, Y.F. and Zhou, D.X. (1999) Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA±TBP±TATA complex. The Plant Journal, 18, 663-668.
Greco, M., Chiappetta, A., Bruno, L. and Bitonti, M.B. (2011) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. Journal of Experimental Botany, 63, 695-709.
Iovene, M., Cavagnaro, P.F., Senalik, D., Buell, C.R., Jiang, J. and Simon, P.W. (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Research, 19, 493-506.
Kaeppler, S.M. and Phillips, R.L. (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA, 90, 8773-8776.
Kakutani, T., Jeddeloh, J. and Richards, E.J. (1995) Characterization of an Arabidopsis thaliana DNA hypomethyltion mutant. Nucleic Acids Research, 23, 130-137.
Kao, Y.Y., Chang, S.B., Lin, T.Y., Hsieh, C.H., Chen, Y.H., Chen, W.H. and Chen, C.C. (2001) Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis Orchids. Annals of Botany, 87, 387-395.
Kim, S.Y., Chung, H.J. and Thomas, T.L. (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. The Plant Journal, 11, 1237-1251.
Li, Y.C., Korol, A., Fahima, T., Beiles, A. and Nevo, E. (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology, 11, 2453-2465.
Lin, S., Lee, H., Chen, W., Chen, C., Kao, Y., Fu, Y., Chen, Y. and Lin, T. (2001) Nuclear DNA contents of Phalaenopsis species and Doritis pulcherrima. Journal of the American Society for Horticultural Science , 126,195-199.
Lindroth, A.M. Xiaofeng, C., James, P. J., Daniel, Z., Claire, M. Mc., Steven, H., Steven, E. J. (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG Methylation. Science, 292, 2077-2080.
Liu, Y.G. and Whittier, R.F. (1995) Thermal Asymmetric Interlaced PCR: automatable amplification and seqencing of insert end fragments from PI and TAC clones for chromosome walking. Genomics, 25, 674-681.
Lou, Q., Iovene, M., Spooner, D.M., Buell, C.R. and Jiang, J. (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization maapping. Chromosoma, 119, 435-442.
Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A., King G.J., Giovannoni J.J. and Seymour, G. (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38, 948-952.
Messeguer, R., Ganal, M., SteVens, J. and Tanksley, S. (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology, 16, 753-770.
Michaels, S. and Amasino, R. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11, 949-956.
Papa, C.M., Springer, N.M., Muszynski, M.G., Meeley, R. and Kaeppler, S.M. (2001) Maize chromomethylase Zea methyltransferase 2 is required for CpNpG methylation. Plant Cell, 13, 1919-1928.
Pavlopoulou, A. and Kossida, S. (2007) Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution. Genomics, 90, 530-541.
Phillips, R.L., Kaeppler, S.M. and Olhoft, P. (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA, 91, 5222-5226.
Rival, A., Jaligot, E., Beule, T. and Finnegan, E.J. (2008) Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil palm (Elaeis guineeesis Jacq.) in relation to the mantled somaclonal variation. Journal of Experimental Botany, 59, 3271-3281.
Sagawa, Y. (1962) Cytological studies on the genus Phalaenopsis. American Orchids Society Bulletin, 31, 459-465.
Schellenbaum, P., Mohler, V., Wenzel, G. and Walter, B. (2008) Variation in DNA methylation patterns of grapenvine somaclones (Vitis vinifera L.). BMC Plant Biology, 8, 78-87.
Shindo, K. and Kamemoto, H. (1963) Karyotype analysis of some species of Phalaenopsis. Cytorogia, 28, 390-398.
Skirvin, R.M., McPheeters, K.D., and Norton, M. (1994) Sources and frequency of somaclonal variation. HortScience, 29, 1232-1237.
Smulders, M.J.M. and Klerk, G.J.d. (2011) Epigenetics in plant tissue culture. Plant Growth Regulation, 63, 137-146.
Speicher, M.R., Ballard, S.G. and Ward, D.C. (1996) Karyotyping human chromosomes by combinational multi-fluor FISH. Nature Genetics, 12, 368-375.
Tamura, K., Kiyoshi, T. and Yonemaru, J. (2012) The development of hoghly transferable intron-spanning markers for temperate forage grasses. Molecular Breeding, 30, 1-8.
Tang, X., J.M. de Boer, H.J. van Eck, Bachem, C. Visser, and Hans de Jong (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Research, 17, 899-915.
Trask, B.J. (1991) Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics, 7, 149-154.
Urao, T., Kazuko, Y.S., Urao, S. and Shinozaki, K. (1993) An Arabidopsis myb homolog is induced by dehydration stress and gene product binds to the conserved MYB recognition sequence. Plant Cell, 5, 1529-1539.
Wang, X., Zhao, X., Zhu, J. and Wu, W. (2005) Genome-wide investigation of intron length polymorphism and their potential as molecular markers in rice (Oryza sativa L.). DNA Research, 12, 417-427.
Xu, M., Li, X. and S.Korban, S. (2004) DNA-methylation alterations and exchanges during in vitro celluar differentiation in rose (Rosa hybrida L.). Theoretical and Applied Genetics, 109, 899-910.
Yanagisawa, S. and Schmidt, R.J. (1999) Diversity and similarity among recongnition sequences of Dof transcription factors. The Plant Journal, 17, 209-214.
Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S., Chen, H., Henderson, I., Shinn, P., Pellegrini, M., Jacobsen, S. and Ecker, J. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126, 1189-1201.
Zhang, Z.L., Xie, Z., Zou, X., Casaretto, J., Ho, T. and Shen, Q. (2004) A rice WEKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology, 134, 1500-1513.
校內:2017-08-28公開