簡易檢索 / 詳目顯示

研究生: 陳清平
Tran, Binh Thanh
論文名稱: 氧化石墨烯量子點為高電壓鋰離子電池之電解液添加劑
Graphene oxide quantum dots as electrolyte additive for high voltage lithium ion batteries
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 60
外文關鍵詞: lequid electrolyte, lithium battery, electrochemical
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Electrolyte additive has become a crucial ingredient to improve the performance and commercialization of lithium ion batteries nowadays. Batteries with lithium metal as their anodes are considered promising energy storage devices because of their high energy density. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. This study proposes for a carbonate-based electrolyte solution of 1 M LiPF6 an electrolyte additive, ammonia-treated graphene oxide dots (A-GODs), which effectively immobilize PF6̄ anions to prevent their decomposition on electrodes as well as improve the mobility of Li+ cations. With an optimal amount of 0.05 wt% in the electrolyte, A-GODs substantially increase the electrochemical stability voltage and smooth the stripping and plating process on Li metal and reduce the polarization. When assembled into batteries, A-GODs promote the capacity, high-rate capability, electrochemical stability, and charge-discharge cycling life of a resulting battery that consists of a Li-metal anode and a LiNi0.5Mn0.3Co0.2O2 cathode. The capacity retention after 100 times of cycling at 1 C-rate reaches 65%, which is superior to that of a battery without using the A-GODs (57%).

    CONTENTS ABSTRACT III LIST OF FIGURES IV LIST OF TABLES VIII LIST OF ABBREVIATIONS IX ACKNOWLEDGEMENTS XI 1. MOTIVATION 1 2. INTRODUCTION: LITHIUM-ION BATTERIES 5 2.1 Working principle 5 2.2 Battery definitions 6 2.3 Electrode materials for Li-ion batteries 8 2.3.1 Cathode materials 9 2.3.2 Overview of Anode Materials 11 2.4 Separators 16 2.5 Electrolytes 17 2.5.1 Aprotic organic liquid electrolyte 17 2.5.2 Solvents 18 2.5.3 Conducting salts 20 2.6 Electrolyte additives 22 2.6.1 Anode additives 22 2.6.2 Cathode additives 26 2.6.3 Graphene oxide quantum dots 28 3. EXPERIMENTAL 32 3.1 Materials and equipment 32 3.1.1 Materials 32 3.1.2 Equipment 33 3.2 Cathode/electrolyte preparation and cell assemblage 34 3.2.1 NMC cathode preparation 34 3.2.2 Graphene Quantum Dots preparation 34 3.2.3 Electrolytes preparation 36 3.2.4 Cell assembly 37 3.3 Electrochemical analyzing method 37 3.3.1 Linear sweep voltage (LSV) and cyclic voltammetry (CV) 37 3.3.2 Electrochemical impedance spectroscopy 38 3.3.3 Conductivity determination using electrochemical impedance spectroscopy 40 3.3.4 Galvanostatic cycling 41 3.3.5 Li stripping-plating test 41 3.3.6 Zeta potential 42 4. RESULTS AND DISCUSSION 45 4.1 Electrochemical performance in half cells 45 4.2 Ionic conductive of electrolyte 46 4.3 Cycling voltammetry of half cell 47 4.4 Zeta potential of doped-additive electrolyte 48 4.5 Galvanostatic cycling in Li/SPE/LFP cells 49 4.6 Lithium stripping/plating test 52 5. CONCLUSION 53

    REFERENCE
    [1] K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, N.P. Dasgupta, Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes, J. Mater. Chem. A 5(23) (2017) 11671-11681.
    [2] K.N. Wood, E. Kazyak, A.F. Chadwick, K.H. Chen, J.G. Zhang, K. Thornton, N.P. Dasgupta, Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy, ACS Cent Sci 2(11) (2016) 790-801.
    [3] D. Bresser, K. Hosoi, D. Howell, H. Li, H. Zeisel, K. Amine, S. Passerini, Perspectives of automotive battery R&D in China, Germany, Japan, and the USA, J. Power Sources 382 (2018) 176-178.
    [4] The Nobel Prize in Chemistry 2019.
    [5] Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A.L. Koh, Y. Yu, Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy, Science 358(6362) (2017) 506-510.
    [6] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334(6058) (2011) 928-935.
    [7] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22(3) (2009) 587-603.
    [8] C. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics 2(1) (2014) 132-154.
    [9] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144(4) (1997) 1188-1194.
    [10] T. Zheng, Y. Liu, E. Fuller, S. Tseng, U. Von Sacken, J. Dahn, Lithium insertion in high capacity carbonaceous materials, J. Electrochem. Soc. 142(8) (1995) 2581-2590.
    [11] A. Du Pasquier, I. Plitz, S. Menocal, G. Amatucci, A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, J. Power Sources 115(1) (2003) 171-178.
    [12] S.-H. Park, S.-W. Oh, C.-S. Yoon, S.-T. Myung, Y.-K. Sun, LiNi0. 5Mn1. 5 O 4 Showing Reversible Phase Transition on 3 V Region, Electrochem. Solid-State Lett. 8(3) (2005) A163-A167.
    [13] S. Lee, Y. Cho, H.K. Song, K.T. Lee, J. Cho, Carbon‐coated single‐crystal LiMn2O4 nanoparticle clusters as cathode material for high‐energy and high‐power lithium‐ion batteries, Angew. Chem. Int. Ed. 51(35) (2012) 8748-8752.
    [14] S.-T. Myung, F. Maglia, K.-J. Park, C.S. Yoon, P. Lamp, S.-J. Kim, Y.-K. Sun, Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives, ACS Energy Letters 2(1) (2016) 196-223.
    [15] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries, Electrochemical Energy Reviews 1(1) (2018) 35-53.
    [16] E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett. 8(8) (2008) 2277-2282.
    [17] J.R. Dahn, T. Zheng, Y. Liu, J. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science 270(5236) (1995) 590-593.
    [18] C.-K. Yang, Erratum:“A metallic graphene layer adsorbed with lithium”[Appl. Phys. Lett. 94, 163115 (2009)], Appl. Phys. Lett. 95(4) (2009) 163115.
    [19] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater. 10(10) (1998) 725-763.
    [20] W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources 196(1) (2011) 13-24.
    [21] G.K. Simon, T. Goswami, Improving anodes for lithium ion batteries, Metallurgical and Materials Transactions A 42(1) (2011) 231-238.
    [22] R. Ruffo, S.S. Hong, C.K. Chan, R.A. Huggins, Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C 113(26) (2009) 11390-11398.
    [23] C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources 189(2) (2009) 1132-1140.
    [24] H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes, Nature nanotechnology 6(5) (2011) 277.
    [25] N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sources 119 (2003) 171-174.
    [26] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology 12(3) (2017) 194.
    [27] P. Arora, Z. Zhang, Battery separators, Chem. Rev. 104(10) (2004) 4419-4462.
    [28] V. Deimede, C. Elmasides, Separators for lithium‐ion batteries: a review on the production processes and recent developments, Energy technology 3(5) (2015) 453-468.
    [29] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci. 9(6) (2016) 1955-1988.
    [30] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, T. Trzeciak, Electrolytes for Li-ion transport–Review, Solid State Ionics 276 (2015) 107-126.
    [31] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104(10) (2004) 4303-4418.
    [32] J.O. Besenhard, Handbook of battery materials, John Wiley & Sons2008.
    [33] V.A. Agubra, J.W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, J. Power Sources 268 (2014) 153-162.
    [34] J. Besenhard, M. Winter, J. Yang, W. Biberacher, Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes, J. Power Sources 54(2) (1995) 228-231.
    [35] R. Fong, U. Von Sacken, J.R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc. 137(7) (1990) 2009-2013.
    [36] J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium‐ion batteries: state of the art and perspectives, ChemSusChem 8(13) (2015) 2154-2175.
    [37] C. Yang, Y. Wang, C. Wan, Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte, J. Power Sources 72(1) (1998) 66-70.
    [38] Y.-M. Lin, K.C. Klavetter, P.R. Abel, N.C. Davy, J.L. Snider, A. Heller, C.B. Mullins, High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries, Chem. Commun. 48(58) (2012) 7268-7270.
    [39] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir 28(1) (2011) 965-976.
    [40] Z.-C. Wang, J. Xu, W.-H. Yao, Y.-W. Yao, Y. Yang, Fluoroethylene carbonate as an electrolyte additive for improving the performance of mesocarbon microbead electrode, ECS Transactions 41(41) (2012) 29-40.
    [41] T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, Z. Ogumi, Suppression of an alkyl dicarbonate formation in Li-ion cells, J. Electrochem. Soc. 152(10) (2005) A2046-A2050.
    [42] C.-C. Chang, S.-H. Hsu, Y.-F. Jung, C.-H. Yang, Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium ion battery, J. Power Sources 196(22) (2011) 9605-9611.
    [43] O. Matsuoka, A. Hiwara, T. Omi, M. Toriida, T. Hayashi, C. Tanaka, Y. Saito, T. Ishida, H. Tan, S. Ono, Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell, J. Power Sources 108(1-2) (2002) 128-138.
    [44] V. Aravindan, J. Gnanaraj, S. Madhavi, H.K. Liu, Lithium‐ion conducting electrolyte salts for lithium batteries, Chemistry–A European Journal 17(51) (2011) 14326-14346.
    [45] H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, Lithium bis (fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties, J. Power Sources 196(7) (2011) 3623-3632.
    [46] M. Dahbi, D. Violleau, F. Ghamouss, J. Jacquemin, F.o. Tran-Van, D. Lemordant, M.r.m. Anouti, Interfacial properties of LiTFSI and LiPF6-based electrolytes in binary and ternary mixtures of alkylcarbonates on graphite electrodes and celgard separator, Industrial & Engineering Chemistry Research 51(14) (2012) 5240-5245.
    [47] J. Burns, N. Sinha, G. Jain, H. Ye, C.M. VanElzen, W. Lamanna, A. Xiao, E. Scott, J. Choi, J. Dahn, Impedance Reducing Additives and Their Effect on Cell Performance II. C3H9B3O6, J. Electrochem. Soc. 159(7) (2012) A1105-A1113.
    [48] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S, Energy Environ. Sci. 8(7) (2015) 1905-1922.
    [49] J. Kalhoff, D. Bresser, M. Bolloli, F. Alloin, J.Y. Sanchez, S. Passerini, Enabling LiTFSI‐based Electrolytes for Safer Lithium‐Ion Batteries by Using Linear Fluorinated Carbonates as (Co) Solvent, ChemSusChem 7(10) (2014) 2939-2946.
    [50] M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, M. Anouti, Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage, J. Power Sources 196(22) (2011) 9743-9750.
    [51] N.-S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, S.-S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources 161(2) (2006) 1254-1259.
    [52] R. Lv, J. Yang, J. Wang, Y. NuLi, Electrodeposited porous-microspheres Li–Si films as negative electrodes in lithium-ion batteries, J. Power Sources 196(8) (2011) 3868-3873.
    [53] Y.-B. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. Du, B. Zhang, Q.-H. Yang, Gassing in Li 4 Ti 5 O 12-based batteries and its remedy, Scientific reports 2 (2012) 913.
    [54] H. Bouayad, Z. Wang, N. Dupre, R. Dedryvère, D. Foix, S. Franger, J.-F. Martin, L. Boutafa, S. Patoux, D. Gonbeau, Improvement of electrode/electrolyte interfaces in high-voltage spinel lithium-ion batteries by using glutaric anhydride as electrolyte additive, J. Phys. Chem. C 118(9) (2014) 4634-4648.
    [55] Y. Zhu, M.D. Casselman, Y. Li, A. Wei, D.P. Abraham, Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries, J. Power Sources 246 (2014) 184-191.
    [56] B. Zhang, M. Metzger, S. Solchenbach, M. Payne, S. Meini, H.A. Gasteiger, A. Garsuch, B.L. Lucht, Role of 1, 3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation, J. Phys. Chem. C 119(21) (2015) 11337-11348.
    [57] L. Liao, T. Fang, X. Zhou, Y. Gao, X. Cheng, L. Zhang, G. Yin, Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive, Solid State Ionics 254 (2014) 27-31.
    [58] L. Liao, X. Cheng, Y. Ma, P. Zuo, W. Fang, G. Yin, Y. Gao, Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode, Electrochim. Acta 87 (2013) 466-472.
    [59] T.-F. Yeh, C.-Y. Teng, L.-C. Chen, S.-J. Chen, H. Teng, Graphene oxide-based nanomaterials for efficient photoenergy conversion, J. Mater. Chem. A 4(6) (2016) 2014-2048.
    [60] N.D.K. Tu, J. Choi, C.R. Park, H. Kim, Remarkable conversion between n-and p-type reduced graphene oxide on varying the thermal annealing temperature, Chem. Mater. 27(21) (2015) 7362-7369.
    [61] L.C. Chen, C.Y. Teng, C.Y. Lin, H.Y. Chang, S.J. Chen, H. Teng, Architecting nitrogen functionalities on graphene oxide photocatalysts for boosting hydrogen production in water decomposition process, Adv. Energy Mater. 6(22) (2016) 1600719.
    [62] A. Moretti, S. Jeong, G.A. Giffin, S. Jeremias, S. Passerini, Li-doped N-methoxyethyl-N-methylpyrrolidinium fluorosulfonyl-(trifluoromethanesulfonyl) imide as electrolyte for reliable lithium ion batteries, J. Power Sources 269 (2014) 645-650.
    [63] A. Lasia, Definition of Impedance and Impedance of Electrical Circuits, Electrochemical Impedance Spectroscopy and its Applications, Springer2014, pp. 7-66.
    [64] J.-P.D. N. Murer, Introduction to EIS (Electrochemical Impedance Spectroscopy) with ECLab.
    [65] Malvern Zetasizer ZS DLS user manual.
    [66] Y.M. Chen, S.T. Hsu, Y.H. Tseng, T.F. Yeh, S.S. Hou, J.S. Jan, Y.L. Lee, H. Teng, Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries, Small 14(12) (2018) e1703571.
    [67] C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D.G. Ivey, W. Wei, High Ion‐Conducting Solid‐State Composite Electrolytes with Carbon Quantum Dot Nanofillers, Advanced Science 5(5) (2018) 1700996.
    [68] S. Bhattacharjee, DLS and zeta potential - What they are and what they are not?, J Control Release 235 (2016) 337-351.
    [69] Y. Lin, X. Wang, J. Liu, J.D. Miller, Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries, Nano Energy 31 (2017) 478-485.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE