| 研究生: |
陳怡如 Chen, Yi-Ru |
|---|---|
| 論文名稱: |
熱電材料Bi2Te3區域重熔之長晶凝固及微組織模擬研究 Thermal and Microstructure Simulation of Thermoelectric Material Bi2Te3 by Zone-melting Technique |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 碲化鉍 、區域重熔 、方向性生長 、微組織 、數值模擬 、CA法 |
| 外文關鍵詞: | Bi2Te3, zone-melting, directional growth, microstructure, numerical simulation, CA method |
| 相關次數: | 點閱:100 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由公式ZT=S2σT/κ可知提升電導率σ並降低熱導率κ可提升ZT值,進而提高熱電轉換效率。由於熱電材料碲化鉍的電性質及熱性質具有高異向性,因此碲化鉍的熱電轉換效率深受其微組織影響,若能長成柱狀晶,就能達到提升電導率及降低熱導率的效果。區域重熔製程中,固體鑄件周圍環繞著移動式加熱器,為一方向性凝固法,所以此製程有利於長成柱狀晶。
本研究利用電腦數值模擬技術建立區域重熔凝固長晶系統的模型,並模擬區域重熔長晶製程的溫度分布隨時間之變化及碲化鉍的微組織。此外,將模擬結果與實驗作比對,驗證數值模型,進一步進行區域重熔凝固長晶系統的最佳化。
為了達到量產的目的,碲化鉍鑄件的尺寸必須增大,因此製程參數必須做調整才能保持柱狀晶的品質。本研究改變的製程參數為加熱器的溫度,以及加熱器與冷卻裝置的移動速度。另外還探討了不同製程參數下凝固長晶介面的型態,因為凝固長晶介面的型態會影響晶粒的生長方向及晶粒大小。模擬結果顯示,當30 φ碲化鉍的加熱器溫度設定在770℃、加熱器及冷卻裝置的移動速度為0.75 cm/hr時,長晶凝固介面呈現凸面,即可生長出最長且最粗的大尺寸柱狀晶,橫截面的平均晶粒直徑可高達6.9 mm。且此製程條件下可得到穩定的熔融區,熔融區長度為6 cm 。
The thermoelectric conversion efficiency of thermoelectric material Bi2Te3 is significantly affected by its microstructure. Considering of the effect of anisotropy on the electrical and thermal properties, the columnar crystal structure can improve the thermoelectric conversion efficiency by raising the electrical conductivity σ and reduce the thermal conductivity κ, because of ZT=S2σT/κ. Zone-melting process is a method which can directionally solidify and purify the ingot by a moving heater along the solid ingot.
In this study, a zone-melting model is setup and numerical simulation techniques are used to simulate temperature variation/distribution of crystallization process and the microstructure of Bi2Te3. Besides, the results of simulation are compared with experimental measurements and verify the numerical model. Furthermore, the verified numerical model is used to investigate the optimal process parameters.
To achieve the goal of mass production, the size of Bi2Te3 ingot should be increased. Then the process parameters, the temperature of heater and the moving speed of heater and cooling device, are adjusted in order to maintain the quality of columnar crystals. The shapes of the solidification interface are compared, which has great impact on the direction of grain growth and the grain size, with different simulation parameters. Summarizing the simulation result, it indicate that there is a maximum cross grain size, 6.9mm, for 30 φ Bi2Te3 at high heater temperature 770℃ and low moving speed 0.75 cm/hr. In these process conditions, the solidification interface is convex. On the other hand, the melting zone is stable and the length of melting zone is 6 cm in this case.
1. S. B. Riffat and X. Ma, “Thermoelectrics:A Review of Present and Potential Applications”, Applied Thermal Engineering, Vol. 23, 2003, pp. 913-935.
2. M. Mikami, “Development of Iron-based Thermoelectric Material as an Alternative to Bismuth Telluride Alloy”, International Conference of Advanced Industrial Science and Technology, No. 35, 2010, pp. 12-13.
3. H. J. Goldsmid, “Thermoelectric Refrigeration”, Pion Ltd., London, 1986.
4. G. L. Bennett, “Historical Overview of the U.S. Use of Space Nuclear Power”, Space Power, Vol. 8, 1989, pp.259-265.
5. A. W. Crook, “Profiting from Low-grade Heat:Thermodynamic Cycles for Low-temperature Heat”, Institution of Electrical Engineers, 1994, pp.121-122.
6. D. M. Rowe, “Possible Offshore Application of Thermoelectric Conversion”, The Marine Technology Society Journal, Vol. 27, 1994, pp.43-50.
7. M. S. Elgenk, H. H. Saber and T. Caillat, “Efficient Segmented Thermoelectric Unicouples for Space Power Application”, Energy Conversion and Management, Vol. 44, 2003, pp. 1755-1772.
8. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, “Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface”, Nature Physics, Vol. 5, 2009, pp. 438-442.
9. K. Lin and P. Dold, “Radiative Heat Transfer in a Resistance Heated Floating Zone Furnace:A Numerical Study with FIDAPTM”, Crystal Research and Technology, Vol. 36, 2001, pp. 629-639.
10. Z. Guo, S. Maruyama and S. Togawa, “Combined Heat Transfer in Floating Zone Growth of Large Silicon Crystals with Radiation on Diffuse and Specular Surfaces”, Journal of Crystal Growth, Vol. 194, 1998, pp. 321-330.
11. I. P. Grande , D. Rivas and V. Pablo, “A Global Thermal Analysis of Multizone Resistance Furnaces with Specular and Diffuse Samples”, Journal of Crystal Growth, Vol. 246, 2002, pp. 37-54.
12. M. Li, W. Hu and S. Chen, “Numerical Investigation of FZ-growth of GaAs with Encapsulant”, International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 2941-2947.
13. C. W. Lan and D. T. Yang, “Dynamic Simulation of the Vertical Zone-melting Crystal Growth”, International Journal of Heat and Mass Transfer, Vol. 41, 1998, pp. 4351-4373.
14. C. W. Lan and M. C. Liang, “Three-dimensional Simulation of Vertical Zone-menting Crystal Growth:Symmetry Breaking to Multiple States”, Journal of Crystal Growth, Vol. 208, 2000, pp. 327-340.
15. C. W. Lan, “Three-dimensional Simulation of Floating-zone Crystal Growth of Oxide Crystals”, Journal of Crystal Growth, Vol. 247, 2003, pp. 597-612.
16. J. A. Spim, M. J. S. Bernadou and A. Garcia, “Numerical Modeling and Optimization of Zone Refining”, Journal of Alloys and Compounds, Vol. 298, 2000, pp. 299-305
17. J. M. Po, M. C. Brito, J. M. Alves, J. A. Silva, J. M. Serra, and A. M. Vallera, “Measurement of the Dopant Concentration in a Semiconductor Using the Seebeck Effect”, Measurement Science and Technology, Vol. 24, 2013
18. D. M. Rowe, “CRC Handbook of Thermoelectrics”, CRC Press, 1995.
19. 陳文進, “錫鉛銲料(Sn63Pb37)與無鉛銲料(Sn95.5Ag4Cu0.5)對熱電模組接點電性影響之研究”, 碩士論文, 國立清華大學材料所, 2006.
20. 況學成、寧小榮, “熱電材料的研究現狀及發展趨勢”, Foshan Ceramics, Vol. 18, 2008, pp. 34-40.
21. H. J. Goldsmid and R. W. Douglas, “The Use of Semiconductors in Thermoelectric Refrigeration”, British Journal of Applied Physics, Vol. 5, 1954, pp. 386-390.
22. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial and P. Gogna, “New Directions for Low-dimensional Thermoelectric Materials”, Advanced Materials, Vol. 19, 2007, pp. 1043-1053.
23. T. M. Tritt, “Thermoelectric Material:Principles, Structure, Properties, and Applications”, Encyclopedia of Materials:Science and Technology, Vol. 19, 2002, pp.1-11.
24. G. J. Snyder and T. S. Ursell, “Thermoelectric Efficiency and Compatibility”, Physical Review Letters, Vol. 91, No.14, 2003, pp. 148301-148303.
25. D. M. Rowe, “Thermoelectrics Handbook:Micro to Nano”, CRC Press, 2006.
26. 郭家宏, “球磨暨火花電漿燒結製備碲化物塊材及其熱電性質之研究”, 博士論文, 國立成功大學材料所, 2010.
27. T. Caillat, L. Gailliard, D. Scherrer and S. Scherrer, “Transport Properties Analysis of Single Crystals (BixSb1-x)2Te3 Grown by the Traveling Heater Method”, Journal of Physics and Chemistry of Solids, Vol. 54, 1993, pp. 575-581.
28. G. D. Mahan and M. Bartkowiak, “Wiedemann-Franz Law at Boundaries”, Applied Physics Letters, Vol. 74, 1999, pp. 953-954.
29. W. M. Yim and F. D. Rosi, “Compound Tellurides and Their Alloys for Peltier Cooling – A Review”, Solid-State Electronics, Vol. 15, 1972, pp. 1121-1140.
30. J. Seo, L. Park, D. Lee and C. Lee, “Thermoelectric Properties of Hot-pressed N-type Bi2Te2.85Se0.15 Compounds”, Journal of Materials Science, Vol.35, 2000, pp.1549-1554.
31. T. S. Oh, J. S. Choi and D. B. Hyun, “Formation of PbTe Intermetallic Compound by Mechanical Alloying of Elemental Pb and Te Power”, Scripta Metallurgica et Materialia, Vol. 32, 1995, pp. 595-600.
32. G. A. Slack and M. A. Hussain, “The Maximum Possible Conversion Efficiency of Silicon-germanlun Thermoelectric Generators”, Journal of Applied Physics, Vol. 70, 1991, pp. 2694-2719.
33. T. Caillat, J. Kulleck, A. Borshchevsky and J. P. Fleurial, “Preparation and Thermoelectric Properties of the Skutterudite-related Phase Ru0.5Pb0.5Sb3”, Journal of Applied Physics, Vol. 79, 1996, pp. 8419-8427.
34. 楊磊、吳建生、張瀾庭, “具有低熱導率的Skutterudite類新型熱電材料”, 材料報導, Vol. 17, 2003, pp. 14-16.
35. A. Balandin and K. L. Wang, “Effect of Phonon Confinement on the Thermoelectric Figure of Merit of Quantum Wells” , Journal of Applied Physics, Vol. 84, 1998, pp. 6149-6154.
36. H. Huang and P. G. McCormick, “Effect of Milling Condition on the Synthesis of Chromium Carbides by Mechanical Alloying”, Journal of Alloys and Compounds, Vol. 256, 1997, pp. 258-262.
37. J. Schilz, Y. S. Kang, Y. Noda and M. Niino, “Bismuth-telluride/iron-disilicide Segmented Thermoelectric Elements:Pattering, Preparation and Properties”, 16th International Conference on Thermoelectrics, 1997, pp. 375-378.
38. V. B. Yurchenko, “Effective Figure of Merit Increase at the Large Temperature Drop”, 15th International Conference on Thermoelectrics, 1996, pp. 194-196.
39. D. P. Snowden, D. T. Allen, B. A. Cook and N. B. Elsner, “High Temperature Segmenting for Increased Specific Output”, 18th International Conference on Thermoelectrics, 1999, pp. 230-233.
40. T. Kajikawa, K. Shida, S. Sugihara and M. Ohmori, “Thermoelectric Properties of Magnesium Silicide Processed Powered Elements Plasma Activated Sintering Method”, 16th International Conference on Thermoelectrics, 1997, pp. 275-278.
41. R. Breschi, A. Camanzi and V. Fano, “Defects in PbTe Single Crystals”, Journal of Crystal Growth, Vol. 58, 1982, pp. 399-408.
42. M. M. Nassary, H. T. Shaban and M. S. El-Sadek, “Semiconductor Parameters of Bi2Te3 Single Crystal”, Materials Chemistry and Physics, Vol. 113, 2009, pp. 385-388.
43. W. M. Yim and E. V. Fitzke, “The Effects of Growth Rate on the Thermoelectric Properties of Bi2Te3-Sb2Te3-Sb2Se3 Pseudoternary Alloys”, Journal of the Electrochemical Society, Vol. 115, 1968, pp. 556-560.
44. N. Keawprak, S. Lao-ubol, C. Eamchotchawalit and Z. M. Sun, “Thermielectric Properties of Bi2SexTe3-x Prepared by Bridgmen Method”, Journal of Alloys and Compounds, Vol. 509, 2011, pp. 9296-9301.
45. E. P. A. Metz, R. C. Miller and R. Mazelsky, “A Technique for Pulling Single Crystals of Volatile Materials”, Journal of Applied Physics, Vol. 33, 1962, pp. 2016-2017.
46. N. K. Abrikosov and L. D. Ivanova, “Single Crystal of Solid Solutions of the System Bi2Te3-Bi2Se3-Sb2Te3”, Inorganic Materials, Vol. 15, 1979, pp.1181-1184.
47. T. Svechnikova, L. Shelimova, P. Konstantinov, M. Kretova, E. Avilov, V. Zemskov, C. Stiewe, A. Zuber and E. Muller, “Thermoelectric Properties of (Bi2Te3)1-x-y(Sb2Te3)x(Sb2Se3)y Single Crystals”, Inorganic Materials, Vol.41, 2005, pp. 1043-1049.
48. G. N. Kozhemyakin, D. V. Lutskiy, M. A. Rom and P. V. Mateychenko, “Growth of SbxBi1-x Gradient Single Crystals by the Czochralski Method with Bi Feed”, Journal of Crystal Growth, Vol. 311, 2009, pp.1466-1470.
49. T. Caillat, M. Carle, D. Perrin, H. Scherrer and S. Scherrer, “Study of the Bi-Sb-Te Ternary Phase Diagram”, Journal of Physics and Chemistry of Solids, Vol. 53, 1992, pp.227-232.
50. A. Aivazov, A. I. Anukhin and I. S. Gavrilenko, “Zone Melting Characteristics of Complex Semiconductors”, Inorganic Materials, Vol. 27, 1991, pp. 780-784.
51. H. P. Ha, Y. J. Oh and D. B. Hyun, “Thermoelectric Properties of n-type Bismuth Telluride Based Alloys Prepared by Hot Pressing and Zone Melting Method”, International Journal of the Society of Materials Engineering for Resources, Vol. 10, No. 2, 2002, pp. 130-134.
52. S. K. Feng, S. M. Li, Q. Y. Luo and H. Z. Fu, “Thermoelectric Properties of Directionally Solidified Bi2Te3 Alloys under High Thermal Gradient”, Advanced Materials Research, Vols. 197, 2011, pp. 1109-1112.
53. G. Kavei and M. A. Karami, “Fabrication and Characterization of the p-type (Bi2Te3)x(Sb2Te3)1-x Thermoelectric Crystals Prepared via Zone Melting”, Indian Academy of Sciences, Vol. 29, No. 7, 2006, pp. 659–663.
54. J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang, “Thermoelectric Properties of p-type (Bi2Te3)x(Sb2Te3)1-x Crystals Prepared via Zone Melting”, Journal of Crystal Growth, Vol. 277, 2004, pp. 258-263.
55. T. Mokari, M. Zhang and P. Yang, “Shape, Size and Assembly Control of PbTe Nanocrystals”, Journal of the American Chemical Society, Vol. 129, 2007, pp. 9864-9865.
56. V. Mamedov, “Spark Plasma Sintering as Advanced PM Sintering Method”, Powder Metallurgy, Vol. 45, 2002, pp. 322-328.
57. M. Omori, “Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System”, Materials Science and Engineering:A, Vol. 287, 2000, pp.183-188.
58. 陳怡君、李炳仁、趙隆山、楊政翰, “以方向性凝固與SPS法製備熱電材料Bi2Te3之研究”, 鑄造工程學刊, Vol. 36, 2010, pp. 25-36.
59. J. Schmidt1, J. Koenig, A. Jacquot, H. Boettner, T. Weissgaerber and B. Kieback, “Application of Spark Plasma Sintering for Manufacturing of Thermoelectric Materials”, International Powder Metallurgy Congress and Exhibition, 2007, pp.105-109.
60. S. G. Kim, I. I. Mazin and D. J. Singh, “First-Principles Study of Zn-Sb Thermoelectrics”, Physical Review B, Vol. 57, 1998, pp. 6199-6204.
61. K. Kishimoto, K. Yamamoto and T. Koyanagi, “Influences of Potential Barrier Scattering on the Thermoelectric Properties of Sintered N-type PbTe with a Small Grain Size”, Japanese Journal of Applied Physics, Vol. 42, 2003, pp. 501-508.
62. K. Kishimoto, M. Tsukamoto and T. Koyanagi, “Temperature Dependence of the Seebeck Coefficient and the Potential Barrier Scattering of N-type PbTe Films Prepared on Heated Glass Substrates by RF Sputtering”, Journal of Applied Physics, Vol. 92, 2002, pp. 5331-5339.
63. C. W. Nan and R. Birringer, “Determining the Kapitza Resistance and the Thermal Conductivity of Polycrystals: a Simple Model”, Physical Review B, Vol. 57, 1998, pp. 8264-8268.
64. R. Siegel and J. R. Howell, ”Thermal Radiation Heat Transfer”, Hemisphere Publishing Corporation, 3rd ed., 1992, pp. 263-311.
65. M. Rappaz and C. A. Gandin, “Probabilistic Modeling of Microstructure Formation in Solidification Processes”, Acta Metallurgica et Materialia, Vol. 41, No. 2, 1993, pp. 345-360.
66. C. A. Gandin and M. Rappaz, “A Coupled Finite Element – Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes”, Acta Metallurgica et Materialia, Vol. 42, No. 7, 1994, pp. 2233-2246.
67. C. A. Gandin, J. L. Desbiolles, M. Rappaz and P. Thevoz, “A Three-Dimensional Cellular Automaton-Finite Element Model for the Prediction of Solidification Grain Structures”, Metallurgical and Materials Transactions:A, Vol. 30A, 1999, pp. 3153-3165.