| 研究生: |
陳衛國 Chen, Wai-Kwok |
|---|---|
| 論文名稱: |
地下埋置管線通過斷層之耐震分析 Seismic Analysis of Buried Pipelines Subjected to Fault Displacement |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
吳俊霖
Wu, Chun-Lin 張長菁 Chang, Chang-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 有限元素法 、近斷層地震力分析 、地埋管線 |
| 外文關鍵詞: | Buired pipe, ABAQUS |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處於地震頻繁帶,近來如1999年集集地震、2016年美濃地震所造成的災害發現,台灣地區地下埋藏管線易因斷層效應而發生嚴重破壞甚至引起二次破壞,尤以台灣地區活動斷層甚多,其中以具高速度脈衝、地表大位移等特性的近斷層地震更具威脅性。故目前學者們致力於研究探討近斷層對於地埋管線之分析模擬與後續對應之補強技術,透過Abaqus有限元素軟體建立數值模型進行模擬斷層剪切破壞管線結構性行為檢討,期望能提供評估與補強技術給國內工程師參考。
本論文根據國家地震工程研究中心(NCREE)所進行之法蘭接頭系列管線,進行靜力側推模擬及實際輸入地震波做斷層剪切試驗模擬,擷取法蘭接頭及管線的尺寸與材料屬性,使用有限元素軟體Abaqus建立數值模擬分析模型,模擬法蘭接頭在地下埋藏時通過斷層的情境,分別採取靜力分析與動力分析,其中針對如何建立適當的網格元素與模型以有效模擬其勁度、強度、破壞模式及非線性行為等詳加研討,希望可研擬目前國內耐震設計規範之不足,並促進對應既有地埋管線補強工法的研發,最後統整模擬獲得的動態行為與相關資料,探討管線與土壤相關行為之分析技術與實務需求,供後續地震工程科技對於地埋管線結構物受震反應時之研究使用。
In view of recent years, for example the earthquake damage caused by the Chi-Chi Earthquake in 1999 and the 2016 Meinong Earthquake found that underground buried pipelines in Taiwan area are prone to subjected to serious damage or even secondary damage due to fault effects. Especially in Taiwan, there are many active faults, including Near-fault earthquakes with high velocity pulses and large surface displacements are more threatening. Therefore, scholars are currently devoted to research and analysis of near-fault analysis and simulation of buried pipelines and subsequent corresponding reinforcement technology. Abaqus finite element software is used to establish a numerical model to review the structural behavior of simulated fault shear failure pipelines. For domestic engineers.
This paper extracts the properties of flange and pipelines based on the repeated load test and triaxial shaking table test of flange joint series members conducted by the National Earthquake Engineering Research Center (NCREE), and uses the finite element software Abaqus to establish a numerical simulation analysis model. Simulating the situation of flange passing through faults when buried, static analysis and dynamic analysis are adopted respectively, in which how to establish appropriate elements to effectively simulate their stiffness, strength, failure mode and nonlinear behavior. After discussion, I hope that we can study the lack of current domestic seismic design specifications, and promote the research and development of existing buried pipeline reinforcement engineering methods. Finally, the demand is for the subsequent research and application of seismic engineering technology on the seismic response of buried pipeline structures.
[1] FEMA (2005) Seismic Guidelines for Water Pipelines American Lifelines Alliance.
[2] Abaqus. (2018). Abaqus analysis user's manual Vol. 3 Materials. Dassault Systèmes Simulia.
[3] Abaqus theory manual. (2020). Dassault Systèmes Simulia.
[4] U.S. Army Corps of Engineers. Unified Facilities Criteria MIL-STD-3007F
[5] ACI318-14. (2014). Building Code Requirement for Structural Concrete (ACI 318-2014) and Commentary (318R-2014). Mich: American Concrete Institute, Farmington Hills.
[6] Birtel, V., Mark, P., Bochum, R. (2006). Parameterised finite element modeling of RC beam shear failure. Ruhr university institure for reinforced and prestessed concrete stuctures.
[7] Bitiusca, L.-F. (2016). Finite Element Modelling of Reinforced Concrete Frame.
[8] Brady, A. G. (1966). Studies of response to earthquake ground motion. Earthquake Eng. Res. Lab., Calif Inst. of Tech., Pasadena.
[9] Chaudhari, S. V., Chakrabarti, M. A. (2012). Modeling of concrete for nonlinear analysis using finite element code Abaqus. International Journal of Computer Applications, 44(7), 14-18.
[10] Chen, X., Duan, J., Li, Y. (2015). Mass proportional damping in nonlinear time-history analysis. China state construction technical center, Beijing.
[11] Cicekli, U. et al (2007). A plasticity and anisotropic damage model for plain concrete. International Journal of Plasticity, 23(10-11), 1874-1900.
[12] Elwi, A. A., D. W. Murray. (1979). A 3D hypoelastic concrete constitutive relationship. Journal of the Engineering Mechanics Division, 105(4), 623-641.
[13] F. Faleschini, P. Bragolusi, M. A. Zanini, P. Zampier, C. Pellegrino. (2017). Experimental and numerical investigation on the cyclic behavior of RC beam column joints with EAF slag concrete. Engineering Structures, 152(2017), 335-347.
[14] Hu, H.-T., Schnobrich, W. C. (1990). Nonlinear analysis of cracked reinforced concrete. ACI Structural Journal, 87(2), 199-207.
[15] Jankowiak, T., Lodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model. Foundations of civil and environmental engineering, 6, 53-69.
[16] Kmiecik, P., Kamiński, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of civil and mechanical engineering, 11(3), 623-636.
[17] Lee, J., Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892-900.
[18] Reed, J. W., Kennedy, R. P. (1994). “Methodology for developing seismic fragilities."TR-103959, Electric Power Research Institute, Palo Alto, CA.
[19] Kennedy, R. P., Hardy, G., Ravindra, M. K. (1983). “Seismic fragilities for nuclear power plant risk studies.”
[20] Campbell, R., Hardy, G., Ravindra, M. K. (2002). “Seismic fragility application guide."TR-1002988, Electric Power Research Institute, Palo Alto, CA.
[21] Kennedy, R. P., Hardy, G., Ravindra, M. K. (2009). “Seismic fragility application guide update."TR-1019200, Electric Power Research Institute, Palo Alto, CA
[22] Budnitz, R. J., Amico, P. J., Cornell, C. A., Hall, W. J., Kennedy, R. P., Reed, J. W., Shinozuka, M. (1985). “An approach to the quantification of seismic margins in nuclear power plants.” NUREG/CR-4334, U.S. Nuclear Regulatory Commission, Washington, D.C.
[23] Reed, J. W., Kennedy, R. P., Buttemer, D. R., Idriss, I. M., Moore, D. P., Barr, T., Wooten, K. D., Smith, J. E. (1991). “A methodology for assessment of nuclear power plant seismic margin.” EPRI-NP-6041-M-Rev.1, Electric Power Research Institute, Palo Alto, CA.
[24] Nigam, N. C., Jennings, P. C. (1968). “Digital calculation of response spectra from strong-motion earthquake records.”
[25] Brady, A. G. (1966). “Studies of response to earthquake ground motion. California Institute of Technology.”
[26] ASME B&PV Code, Section III Div, I, Subsection NB. (2007). “Class 1 Components Rules for Construction of Nuclear Power Plant Components.”
[27] International Organization for Standardization, ISO-16670. (2003). “Joints Made with Mechanical Fasteners – Quasi-Static Reversed-Cyclic Test Method.”
[28] American Society of Civil Engineers (ASCE). (2012). “Seismic analysis of safety-related nuclear structures."ASCE 4-09, Reston, Virginia.
[29] U.S. Nuclear Regulatory Commission (USNRC). (2017). “Seismic design standards and calculational methods in the United States and Japan."NUREG/CR -7230.
[30] U.S. Nuclear Regulatory Commission (USNRC). (1975). “Reactor safety study."WASH-1400, NUREG-73/041.
[31] Motosh, N. (1976). “Development of Design Charts for Bolts Preloaded up to the Plastic Range.” Journal of Manufacturing Science and Engineering, p. 849-851.
[32] Bickford, J. H. (2008). “Introduction to The Design and Behavior of Bolted Joints.”
[33] Liu, J. H., Ouyang, H. J., Peng, J. F., Zhang, C. Q., Zhou, P. Y., Ma, L.J., Zhu, M. H. (2016). “Experimental and numerical studies of bolted joints subjected to axial excitation.”
[34] SIMULIA, ABAQUS User’s Manual, version 6.6
[35] Shambhu P. D., Indrajit, C. “Computation of Rayleigh Damping Coefficients for Large Systems.”
[36] Shigley, J. E., Mischke, C. R. (2001). “Mechanical Engineering Design.”
[37] IPEX, “Double Containment Piping Systems.”
[38] A Forterra Company, “Seismic Pipe & Fittings. ”
[39] 劉嚴方 (2014). 「電廠餘熱移除系統之數值分析與實驗驗證」
[40] 張文婕 (2015). 「核能電廠餘熱移除系統耐震行為之試驗與分析」
[41] 呂宥勳 (2016). 「電廠管線法蘭接頭之力學分析與實驗驗證」
[42] 黃尹男、柴駿甫、張長菁、林凡茹、賴姿妤、游青青、鄒謹謙、沈盈秀、劉嚴方、陳宏銘、柯俊宇 (2015). 「核能電廠地震危害風險抑抵計畫期末報告,台灣電力股份有限公司」
[43] 林柏豪、胡宣德 (2019) 「核能電廠餘熱移除管線系統受震反應及易損性分析」
校內:2025-08-01公開