| 研究生: |
蔡俐雯 ,Tasi, Li-Wen |
|---|---|
| 論文名稱: |
利用CHO細胞在生物反應器生產人類基因重組尿激酶 The Production of Recombinant Pro-urokinase by CHO Cells in Bioreactors |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 尿激酶 、生物反應器 |
| 外文關鍵詞: | pro-urokinase, pro-urokinase mutant, bioreactor, BelloCell, spinner flask |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這個報告中,我們以spinner flask及BelloCell○R來生產CHO cell中的基因重組蛋白質-pro-urokinase。在本研究中所用到的細胞株分別為生產人類重組蛋白質pro-urokinase的CHO-UK及生產pro-urokinase mutant(proUK-Mu)的CHO-UK-MU。在以spinner flask養殖CHO-UK來生產proUK時,CHO cell生產過程中會分泌出protease去活化單鏈pro-UK成為雙鏈的UK。當於與CHO-UK養殖環境相同下,同樣以spinner flask來養殖CHO-UK-Mu時,所得產物則是很穩定的單鏈proUK-Mu(分子量為54kDa)。這個結果說明CHO cell所生產protease不會對我們實驗室所建構出來的proUK-Mu產生影響。比較以spinner flask生物反應器及BelloCell生物反應器來培養相同的細胞株CHO-UK-Mu時,我們所得的細胞密度比較下,BelloCell所培養出的細胞密度約為spinner flask的四倍;再比較細胞株在這兩個生物反應器的培養環境下所生產的代謝物-乳酸濃度,發現spinner flask中的乳酸濃度是以累計的方式存在著,故細胞株是一直長期處在高濃度的乳酸環境下,而BelloCell則由於每天更換整個系統中全部的培養液,故細胞受到乳酸的破壞程度較低;接著比較兩者每天所生產的酵素活性,BelloCell每天細胞所生產的總酵素活性就逼近spinner flask中細胞生產的累積酵素量;最後,以純化後的酵素總量來比較這兩個反應器的每天產率,BelloCell每天產率是spinner flask每天產率的2.5倍。這結果說明以BelloCell進行量產可以得到比spinner flask還要好的結果。
In this report, spinner flask bioreactor and BelloCell bioreactors were used to produce recombinant pro-urokinase in CHO cells. The CHO cell lines used in this study were CHO-UK and CHO-UK-Mu that producing recombinant human pro-urokinase (pro-UK) and pro-urokinase mutant (proUK-Mu), respectively. We cultivated CHO-UK cells in spinner flask bioreactor and purified the culture medium to get proUK. The SDS-PAGE of proUK showed that the CHO cells would secrete protease to cleave the single-chain proUK into two-chain UK. But we produced proUK-Mu by CHO-UK-Mu either in spinner flask or in BelloCell, the finally purified proUK-Mu was a single-chain form. It suggested the proUK-Mu would not be affected by the protease. Otherwise, we compared the yield of proUK-Mu in spinner flask and in BelloCell. The cell density and the growing environment in BelloCell were better than in spinner flask, even the productivity of a day was the BelloCell advancing.
Anna Mondino1 and Francesco Blasi2. (2004) uPA and uPAR in fibrinolysis, immunity and pathology. TRENDS in Immunology Vol.25 No.8: 450-455
A. B. Dobrovolsky* and E. V. Titaeva. (2002) The Fibrinolysis System: Regulation of Activityand Physiologic Functions of Its Main Components. Biochemistry (Moscow) Vol. 67, No. 1: 99-108.
Aldert A.Bergwerff Jan VAN OOSTRUM. (1995) The major N-linked carbohydrate chains from urokinase. Eur.J.Biochem.228: 1009-1019
Gotoh T, Honda H, Shiragami N and Unno H. (1993) A new type
porous carrier and its application to culture of suspension cells. Cytotechnol 11: 35–40
Glen Spraggonl* t, Christopher Phillips1. (1995) The crystal structure of the catalytic domain of human urokinase-type plasminogen activator .
Structure Vol 3 No 7: 681-691
Lenich C., Pannell R., Henkin J.&Gurewich V.(1992) The influence of glycosylation on the catalytic and fibrinolytic properties of pro-urokinase. Thromb.Haemostas 68: 539-544
Kenji Kubotaa, Hiroyuki Kogurea, Yuka Masudaa. (2004) Gelation dynamics and gel structure of fibrinogen Biointerfaces 38: 103–109
Looby D and Griffiths B. (1990) Immobilization of animal cells in
porous carrier culture. TIBTECH 8: 204–209
Marc Verstraete, MD, PhD. (2000) Third-Generation Thrombolytic Drugs. THE AMERICAN JOURNAL OF MEDICINE. 109: 52-58
Nobuhara M, Sakamaki M, Ohnishi H, Suzuki YA. (1981) Comparative study of high molecular weight urokinase and low molecular weight urokinase. J Biochem (Tokyo). 90(1): 225-32.
Ping Wang1,2. (2000) Catalytic and Fibrinolytic Properties of Recombinant Urokinase Plasminogen Activator from E. Coli, Mammalian, and Yeast Cells. Thrombosis Research. 100: 461- 467
Ryan S. Senger and M. Nazmul Karim. (2003) Effect of Shear Stress on Intrinsic CHO Culture State and Glycosylation of Recombinant Tissue-Type Plasminogen Activator Protein. Biotechnol. Prog. 19: 1199-1209
T.C. Wun, W.D. Schleuning, E. Reich. (1982) Isolation and characterization of urokinase from human plasma. J. Biol.Chem. 257: 3276-3283
T. Astrup. (1952) The fbrin plate method for estimating
the fbrinolytic activity. Arch. Biochem. Biophys. 40: 346-351
Van Wezel AL (1967) Growth of cell-strains and primary cells on
microcarriers in homogeneous culture. Nature 216: 64–65
V. V. Stepanova1 and V. A. Tkachuk1,2. (2002) Urokinase as a Multidomain Proteinand Polyfunctional Cell Regulator.Biochemistry (Moscow). Vol. 67 No. 1: 109-118.
William R. Bell,MD, PhD. (2002) Therapeutic Agents—Pharmacokinetics and Pharmacodynamics. REVIEWS IN CARDIOVASCULAR MEDICINE. VOL. 3 SUPPL. 2: 34-44
Xianwen Hu1(2000).Pilot production of u-PA with porous microcarrier cell culture. Cytotechnology. 33: 13–19
Yelena Parfyonovaa. (2004) Contrasting Effects of Urokinase and Tissue-Type Plasminogen Activators on Neointima Formation and Vessel Remodelling after Arterial Injury. J Vasc Res. 41: 268–276
Yang, W.-P., Goldstein, J., Procyk, R., Matsueda, G. R., and Shaw, S.-Y.
(1994) Design and evaluation of a thrombin-activable plasminogen activator. Biochemistry 33: 2306-2312.
王旻、譚樹華、李泰明、鄭衍、李謙、施小龍等編,生物製藥技術,五南圖書出版,第2-4; 180-186頁,2004年
王麗芬編,高血壓與中風,國家出版社 出版,第44~49頁,1993年
吳孟靜,抗血管增生藥物之製造與抗血管增生活體試驗,國立成功大學生物科技研究所碩士論文,第26頁,2003年
由IMB Academia Sinica Bioinformatics-Biology Service Core(BBSC)提供的網路教學: 後基因體時代之生物技術 第十一章