| 研究生: |
黃柏嘉 Huang, Bo-Jia |
|---|---|
| 論文名稱: |
鋅量子點同調性成長在矽(111)之成長機制以及熱鬆弛效應之研究 The growth mechanism and relaxation of Zn dots coherently grown on Si(111). |
| 指導教授: |
羅光耀
Lo, Kuang-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 鋅/氧化鋅量子點 、鋅/氧化鋅薄膜 、二次諧波 |
| 外文關鍵詞: | Zn/ZnO dots, Zn/ZnO film, Second harmonic generator |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
同調性金屬量子點成長在半導體的表面會減少其表面的片電阻,還有提升奈米裝置進一步的使用性能。射頻濺鍍方法被提升用來成長同調性鋅量子點在矽(111)上。雖然射頻濺鍍成長的方法是屬於動力學途徑而且不滿足熱平衡的情況下,我們是使用氧化鋅的靶材來執行濺鍍,控制適當的基板溫度、負偏壓還有氫氣的比例,讓鋅量子點從液態變成固態成功的成長在矽(111)的基板上。由於鋅和矽(111)之間模式匹配,我們在濺鍍的過程中,使用高能氫離子清除矽基板表面的二氧化矽,使得鋅量子點能被矽(111)基板受限住。鋅量子成長的形狀會因為不同的成長參數相互影響,這複雜的量子點成長機制使用新穎的分析方式,結合二次諧波和同步輻射X光晶格繞射來做量子點的結構分析。二次諧波的實驗是使用脈衝雷射來量測樣品,每一發光點能覆蓋超過109個鋅量子點,陳列出淨對稱偶極在二次諧波圖案的貢獻,其結果將使用同步輻射X光晶格繞射來做對照,探討鋅量子點的晶格方向。研究鋅同調性成長在矽(111)的成長機制,不僅是對製作金屬量子點有幫助,也可以利用二次諧波和同步輻射X光繞射得到成核早期階段的物理現象。
我們也將鋅量子點做退火的動作,使得鋅量子點更被矽(111)基板受限住。二次諧波和X光繞射證明鋅量子點被矽(111)受限住,也可以觀察到較大的鋅量子點發生鬆弛的現象。這種方式可以當作未來奈米金屬接觸的參考來改善介面電阻。
The metal dot coherently grown on semiconductor surface would reduce the contact resistance and enhance the performance of the nano-device for further usage. A strategic radio frequency (rf) sputtering method is promoted to fabricate Zn dots coherently grown on Si(111). Although the growth of RF sputtering belongs to the kinetics pathway without satisfying the situation of thermal equilibrium, we performed the strategic sputtering method with ZnO target, heated substrate, negative bias and hydrogen gas to successfully grow Zn dots from liquid phase to solid phase on Si(111). Due to the pattern match between Zn and Si(111), Zn dots can be constrained by Si(111) surface without shielding of native SiO2 which was reduced by energetic hydrogen ion during sputtering process. The growth parameters would influence the final morphology of Zn dots mutually, the complicated growth mechanism of Zn dots is discussed and analyzed by a novel inspection way which combined with reflective second harmonic generation (RSHG) and synchrotron XRD. The light spot of pump laser would cover more than 109 Zn dots and exhibit the net symmetrical dipole contribution to RSHG pattern and its result will be confirmed by synchrotron XRD which reveals the whole possible crystal orientation of Zn dots. To study the mechanism of Zn dot coherently grown on Si(111) is not only helpful for further metal dot fabrication, but also realize the physical behavior of nucleation at early stage with assist of RSHG and synchrotron XRD.
We also performed a post-annealing process to let as-growth Zn dots more constrained by Si(111). RSHG and XRD proves more Zn dots constrained by Si(111) but also cause larger Zn dots to be relaxation. This way can be a reference for further nano-metal contact to improve the interface resistance.
1. R. Behrisch, “Sputtering by Particle bombardment,” (1981).
2. R. Behrisch and W. Eckstein, “Sputtering by Particle bombardment: Experiments and Computer Calculations from Threshold to Mev Energies,” (2007).
3. M. H. Huang ,S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science Vol. 292, Issue 5523, pp. 1897-1899 (2001).
4. L. I. Maissel and P. M. Schaible, J. Appl. Phys. 36, 237 (1965)
5. H. Liu , L. Feng, J. Zhai, L. Jiang, and D. Zhu, Langmuir, 20 (14), pp 5659–5661, (2004).
6. S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, Hyun M. Jang,S. Hong and T. Joo, Appl. Phys,no.80, 1924 (2002).
7. H. Qiu, G. Sfifrfin, B. Pecz, P. B. Barna , A. Kosuge, H. Nakai, S. Yugo and M. Hashimoto, Thin Solid Film 229,107-112 (1993).
8. C. C. Liu, J. H. Huang, C. S. Ku, S. J. Chiu, J. Ghatak, S. Brahma,C. W. Liu, C. P. Liu& K. Y. Lo, Scientific Reports 5, Article number: 12533 (2015).
9. L.B.Freund and S.Suresh, “ Thin Film Materials ” (2008).
10. B. Vinet , L. Magnusson , H. Fredriksson , P. J. Desré , Journal of Colloid and Interface Science, Pages 363-374 (2002).
11. Y. H. Liang, J. H. Huang, N. C. Chang and C. P. Liu, Crystal Growth and Design 9, 2021 (2009).
12. M. Sano, K. Miyamoto, H. Kato, T. Yao, J. Appl. Phys, 95, 5527 (2004).
13. D. Zhang, L. Guan, Z. Li, G. Pan, X. Tan and L. Li, Applied Surface Science 253, 874-880 (2006).
14. Y. Kajikawa, Journal of Crystal Growth, Pages 387–394(2006)
15. Taylor, J. E. & Cahn, J. W. Theory of Orientation Textures due to Surface Energy Anisotropies. J. Electron. Mater. 17, 443–445 (1988).
16. Winterbottom, W. L. Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303–310 (1967).
17. A.B. Djurisic, and Y.H.Leung,“Optical Properties of ZnO Nanostructures,“small, Volume 2, no. 8-9,Pages 944–961(2006).
18. K. Y. Lo, Yi Jen Huang, Jung Y. Huang, Zhe Chuan Feng,William E. Fenwick, Ming Pan and Ian T. Ferguson, Appl. Phys. Letts 90, 161904 (2007)
19. K. Y. Lo, Shih-Chieh Lo, Chang-Feng Yu, Teddy Tite, Jung-Y. Huang, Yi-Jen Huang, Ren-Chuan Chang and Sheng-Yuan Chu, Appl. Phys. Letts 92, 091909 (2008).
20. J. Nelson et al., "In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries", J. Am. Chem. Soc. 134 (2012) p. 6337-6343.