簡易檢索 / 詳目顯示

研究生: 黎沛伶
Li, Pei-Ling
論文名稱: 奈米矽晶材料太陽能電池之研製及光伏特性研究
Fabrication and Development of Nano-crystalline Silicon Based Solar Cells and Its Photovoltaic Characteristics
指導教授: 高騏
Gau, Chie
共同指導教授: 劉建惟
Liu, Chien-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 172
中文關鍵詞: 矽量子點微晶矽非晶碳化矽硼氣源處理
外文關鍵詞: silicon quantum dots, microcrystalline silicon, diborane gas flush treatment, amorphous silicon carbide
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究目的為研製矽結晶類薄膜並應用於太陽能電池,依據矽結晶類薄膜包覆結晶的基材差異而將薄膜的研製分為矽量子點薄膜與微晶矽薄膜兩大方向探討研究,分別對於製作參數改變之薄膜特性做詳細的材料分析。以矽量子點薄膜而言,本文採用高溫回火富矽氮化矽層之方式,使富矽氮化層中過量之矽於氮化矽薄膜中析出形成矽量子點。經不同的回火溫度及回火時間測試可得到最佳化之回火條件。除此之外,亦藉由調整製作富矽氮化矽層時的沈積氣體比例可控制量子點薄膜析出的數量。實驗發現薄膜中包覆不同密度的矽量子點造成薄膜對於相同入射光源有不同的電流響應產生。應用此薄膜於單晶太陽能電池中作為抗反層,則可使電池轉換效率從原本沒使用抗反射膜的5.42%增加至6.72%。另一方面之研究則為微晶矽薄膜之研製,在研究中使用40.68MHz超高頻電漿增強化學氣相沈積系統製作薄膜,藉由變化不同製程條件,如不同的氫氣通量、矽甲烷通量、製程壓力及電漿功率等製程條件,製作不同性質之本質微晶矽薄膜。由薄膜性質量測與電池製作之結果顯示,增加氫氣通量或降低矽甲烷通量可是薄膜之結晶比例有效上升。結晶比例之提高可使電池轉換效率由4.54%提升至5.39%,但結晶比例之提升有其最佳值,當薄膜之結晶比過高時則反而使效率變差。壓力之提升對於電池轉換效率亦有顯著改善,固定沉積參數(SC=1.67)變化壓力由5Torr增加到7Torr時,電池轉換效率由5.39%增加至6.39%。另外,當微晶矽薄膜具一定結晶比時,則電漿功率之提升對於電池轉換效率則沒有顯著的作用。接著則針對微晶矽薄膜太陽能電池做進一步的改善,分別嘗試以電池結構變化及針對電池p-i接面採取硼氣源處理的方式改善電池轉換效率。結果顯示,以二硼烷氣體在p層表面做短時間的沖刷及抽空,可有效提升電池轉換效率。另外,變化微晶矽薄膜太陽能電池結構,使用p型非晶碳化矽薄膜取代原本的p型微晶矽薄膜雖然會使電池的短路電流微幅下降,但是由於其在開路電壓大幅增加的表現,則仍然使電池轉換效率獲得改善,電池轉換效率可由4.47%提升至5.59%。

    The objective of the current study is to develop and fabricate silicon based crystalline materials in order to make into photovoltaic (PV) solar cells. The current study of silicon films for PV applications includes two different parts based on the individual matrix around the crystalline materials. One of the studies is the development and fabrication of applying silicon quantum dots thin films to crystalline silicon solar cells, the other is the study of hydrogenated microcrystalline silicon thin film solar cells. For characterization of silicon quantum dots films under different process conditions, after deposition of silicon rich nitride layer by the PECVD process a high temperature anneal is adopted so that excessive amount of silicon quantum dots can be precipitates in the silicon rich nitride layer. An optimum condition for the anneal to obtain silicon quantum dots film has been verified through series of tests. In addition, the number of silicon quantum dots within the film can be controlled by varying the mixing ratio of silane and ammonia gas. This variation of silicon quantum density within the film causes different photo response. The conversion efficiency of the solar cell with silicon film embedded with silicon quantum dots can be improved from 5.42% to 6.49%. The other part is development and fabrication of microcrystalline silicon thin film solar cells with intrinsic layer deposited at different hydrogen gas flow, silane flow rate, deposition working pressure and power density at 40.68 MHz with very-high-frequency plasma-enhanced chemical vapor deposition system. As the results of film properties, the increase of hydrogen gas flow or the decrease of silane gas flow can increase the crystalline volume ratio in the films. The efficiency of solar cell made by this thin film increases from 4.54% to5.39% as the crystalline volume ratio in the film increases. However, the efficiency of the solar cell decreases as the crystalline volume ratio becomes too high. The increase in fabrication pressure from 5Torr to 7Torr can lead to notable improvement in cell efficiency from 5.39% to6.39%, but the increase in power density does not have any improvement in cell efficiency. Further improvement of the cell efficiency can be achieved by changing the structure of solar cell, and surface treatment on the p-i surface of the solar cell. It is shown that the diborane gas flush treatment on the p layer can improve the cell efficiency. Besides, replacing microcrystalline p layer with the amorphous p type silicon carbide can substantially improve the solar cell efficiency due to the significant increase in Voc but slight decrease in currents density. The conversion efficiency increases from 6.39% to8.35%.

    摘要 I ABSTRACT XII 誌謝 XIV CONTENTS XV LIST OF TABLES XVIII LIST OF FIGURES XX NOMENCLATURE XXV CHAPTER Ⅰ INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 1.3 Literatures Review 3 1.3.1 The Preparation of Silicon Quantum Dots Thin Films 3 1.3.2 The Growth Methods of Hydrogenated Microcrystalline Silicon Thin Films 5 CHAPTER Ⅱ FABRICATION AND MEASUREMENTS OF NANO-CRYSTALLINE SILICON BASED THIN FILMS AND SOLAR CELLS 10 2.1 Structure of Si-QDs/c-Si Solar Cells 10 2.1.1 Synthesis of Silicon Quantum Dots Thin Films 10 2.1.2 Design and Fabrication of Si-QDs/c-Si Solar Cells 11 2.2 Structure of c-Si:H Solar Cells 13 2.2.1 Growth of Hydrogenated Microcrystalline Silicon Thin Films 13 2.2.2 Design and Fabrication of c-Si:H Solar Cells 14 2.2.3 Design of New Structured c-Si:H Solar Cells 15 2.3 Apparatus of Fabrication and Characterization 16 CHAPTER Ⅲ CHARACTERISTICS OF NANO-CRYSTALLINE SILICON BASED THIN FILMS 19 3.1 Characterization of Silicon Quantum Dots Thin Films 20 3.1.1 The Effect of Anneal Process for Silicon Quantum Dots Thin Films 20 3.1.2 The Effect of Different Growing Gas Mixing Ratio 23 3.1.3 Photo Response of Silicon Quantum Dots Thin Films 25 3.1.4 Summary 26 3.2 Characterization of Hydrogenated Microcrystalline Silicon Thin Films 26 3.2.1 The Effect of Different Hydrogen Dilution 26 3.2.2 The Effect of Different Silane Flow Rate 29 3.2.3 The Effect of Different Deposition Working Pressure 30 3.2.4 The Effect of Different Deposition Power Density 31 3.2.5 The Influence of P Type Layer 32 3.2.6 Summary 33 CHAPTER Ⅳ CHARACTERISTICS OF NANO-CRYSTALLINE SILICON BASED SOLAR CELLS 35 4.1 Si-QDs/c-Si Solar Cells 35 4.1.1 The effect of film thickness 35 4.1.2 The effect of gas mixing ratio 36 4.1.3 Summary 37 4.2 Characteristics of c-Si:H Solar Cells 37 4.2.1 The influence of p layer 37 4.2.2 The Effect of Different Hydrogen Dilution 39 4.2.3 The Effect of Different Silane Flow Rate 40 4.2.4 The Effect of Different Deposition Pressure 40 4.2.5 The Effect of Different Deposition Power Density 41 4.2.6 Summary 42 4.3 Improvement of c-Si:H Solar Cells 42 4.3.1 New Structured c-Si:H Solar Cells 42 4.3.2 Diborane Treatment for c-Si:H Solar Cells 51 4.3.2.1 The Adding of Diborane Layer into p-i Surface 54 4.3.2.2 The Effect of Diborane Gas Flush treatment 56 4.3.3 Summary 61 CHAPTER Ⅴ CONCLUSIONS AND FUTURE RECOMMENDATION 63 5.1 Conclusions 63 5.2 Recommendations for Future Work 65 REFERENCES 67 PUBLICATION LIST 171

    REFERENCES

    [1] Canham L. T., 1990, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters, 57, pp.1046-1049
    [2] Takagi H., Ogawa H., Yamazaki Y., Ishizaki A., Nakagiri T., 1990, “Quantum size effects on photoluminescence in ultrafine Si particles,” Applied Physics Letters, 56, pp. 2379.1-2379.33.
    [3] Furukawa S., Miyasato T., 1998, “Three-Dimensional Quantum Well Effects in Ultrafine Silicon Particles,” Japanese Journal of Applied Physics, 27, pp. L2207-L22094.
    [4] Furukawa S., Mayasato T., 1988, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Physical Review B, 38, pp. 5726-5729
    [5] Brandt M.S., Fuchs H.D., Stutzmann M., Weber J., Cardona M., 1992, “The origin of visible luminescencefrom “porous silicon: A new interpretation,” Solid State Communications, 81, pp. 307-312.
    [6] Withrow S. P., White C. W., Meldrum A., Budai J. D., Hembree D. M., Barbour J.C., 1999, ”Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2,” Journal of Applied Physics, 86, pp.396.1-396.6.
    [7] Brongersma M. L., Kik P. G. and Polman A., 2000, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Applied Physics Letter, 76, pp. 351-353.
    [8] Park N. M., Kim T. S., Park S. J., 2001, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Applied Physics Letters, 78, pp. 2575.1-2575.3.
    [9] Seo S. Y., Cho K. S. and Shin J. H., 2004, “Intense blue–white luminescence from carbon-doped silicon-rich silicon oxide,” Applied Physics Letters, 84, pp. 717.1-717.3.
    [10] Wang C. J., Tsai M. Y., Chi C. C., Perng T. P., 2009, “Surface effects on the photoluminescence of Si quantum dots,” Journal of Nanoparticle Research, 11, pp.569-574.
    [11] Ma Z. X., Liao X. B., He J., Cheng W. C., Yue G. Z., Wang Y. Q., Kong, G. L., 1998, “Annealing behaviors of photoluminescence from SiOx:H,” Journal of Applied Physics, 83, pp.7934.1-7934.6.
    [12] Wakayama Y., Inokuma T., Hasegawa S., 1998, “Nanoscale structural investigation of Si crystallites grown from silicon suboxide films by thermal annealing,” Journal of Crystal Growth, 183, pp. 124-130.
    [13] Vinciguerra V., Franzo G. and Priolo F., 2000, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” Journal of Applied Physics, 87, pp. 8165.1-8165.9.
    [14] Wang Y. Q., Kong G. L., Chen W. D., Diao H. W., Chen C. Y., Zhang S. B., Liao X. B., 2002, “Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix,” Applied Physics Letter, 81, pp. 4174.1-4174.3.
    [15] Chen X. Y., Lu Y. F., Tang L. J., Wu Y. H., Cho B. J., Xu X. J., Dong J. R., Song W. D., 2005, “Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition,” Journal of Applied Physics, 97, pp.014913-014913-10
    [16] Hao H. L., Shen W. Z., 2008, “Identification and control of the origin of photoluminescence from silicon quantum dots,” Nanotechnology, 19, pp. 455704.1- 455704.5.
    [17] Zhou J., Chen G. R., Liu Y., Xu J., Wang T., Wan N., Ma Z. Y., Li W., Song C., Chen K. J., 2009, “Electroluminescent devices based on amorphous SiN/Si quantum dots / amorphous SiN sandwiched structures”, Optics Express, 17, pp. 156-162.
    [18] Delachat1 F., Carrada M., Ferblantier G., Grob J. J., Slaoui A., Rinnert H., 2009, “The structural and optical properties of SiO2/Si rich SiNx multilayers containing Si-ncs,” Nanotechnology, 20, pp.275608-275608-5.
    [19] Conibeer G., Green M., Corkish R., Cho Y., Cho E. C., Jiang C. W., Fangsuwannarak T., Pink E., Huang Y., Puzzer T., Trupke T., Richards B., Shalav A., Lin K. L., 2006, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511–512, pp. 654-662
    [20] Conibeer G., Green M., Cho E. C., König D., Cho Y. H., Fangsuwannarak T., Scardera G., Pink E., Huang Y., Puzzer T., Huang S., Song D., Flynn C., Park S., Hao X., 2008, “Silicon quantum dot nanostructures for tandem photovoltaic cells,” Thin Solid Films, 516, pp. 6748-6756
    [21] Cho E. C., Park S., Hao X. J., Song D., Conibeer G., Park S. C., Green M. A, 2008, “Silicon quantum dot/crystalline silicon solar cells,” Nanotechnology, 19, pp. 245201-245201-5
    [22] Kim T. W., Cho C. H., Kim B. H., and Park S. J., 2006, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3,” Applied Physics Letters, 88, pp. 123102.1-123102.3
    [23] Vetterl O., Finger F., Carius R., Hapke P., Houben L., Kluth O., Lambertz A., Mück A., Rech B., Wagner H., 2000, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Solar Energy Materials and Solar Cells, 62, pp. 97-108.
    [24] Veprek S., Mareček V., 1968, “The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport,” Solid-State Electronics, 11, pp.683-684.
    [25] Usui, S., Kikuchi M., 1979, “Properties of heavily doped GDSi with low resistivity, Journal of Non-Crystalline Solids, 34, pp. 1-11
    [26] Tsu R., Izu M., Ovshinsky S.R., Pollak F.H., 1980, “Electroreflectance and Raman scattering investigation of glow-discharge amorphous Si:F:H,” Solid State Communications, 36, pp.817-822
    [27] Hamasaki T., Kurata H., Hirose M., Osaka Y., 1980, “Low‐temperature crystallization of doped a‐Si:H alloys,” Applied Physics Letters, 37, pp.1084 (3 pages)
    [28] Matsuda A., 1983, “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma,” Journal of Non-Crystalline Solids, 59-60, pp.767-774.
    [29] Matsuda A., 1999, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas,” Thin Solid Films, 337, pp.1-6.
    [30] Keppner H., Meier J., Torres P., Fischer D., Shah A., 1999, “Microcrystalline silicon and micromorph tandem solar cells,” Applied Physics A, 69, pp.169-177.
    [31] Vallat-Sauvain E., Kroll U., Meier J., Shah A., Pohl J., 2000, “Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution,” Journal of Applied Physics, 87, pp. 3137 (6 pages).
    [32] Shah A.V., Meier J., Vallat-Sauvain E., Wyrsch N., Kroll U., Droz C., Graf U., 2003, “Material and solar cell research in microcrystalline silicon,” Solar Energy Materials & Solar Cells, 78, pp. 469–491.
    [33] Strahm B., Howling A. A., Sansonnens L., Hollenstein Ch., 2007, “Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges,” Plasma Sources Science and Technology, 16, pp. 80-89
    [34] Uchida Y., Ichimura T., Ueno M., Haruki H., 1982, “Microcrystalline Si: H Film and Its Application to Solar Cells,” Japanese Journal of Applied Physics, 21, pp. L586-L588.
    [35] Meier J., Flückiger R., Keppner H., Shah A., 1994, “Complete microcrystalline p-i-n solar cell-Crystalline or amorphous cell behavior,” Applied Physics Letters, 65, pp.860-860-3.
    [36] Curtins, H., Wyrsch, N., Shah, A.V., 1987, “High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency,” Electronics Letters, 23, pp.228-230.
    [37] Yamamoto K., Yoshimi M., Tawada T., Kamoto Y., Nakajima A., Igari S., 1999, “Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature,” Applied Physics A, 69, pp. 179-185.
    [38] Mastumoto M., Shima M., Okamoto S., Murata K., Tanaka M., Kiyama S., Kakiuchi H., Yasutake K., Yoshii K., Endo K., Moro Y., 2003, “Extremely high rate deposition of silicon thin-film prepared by atmospheric plasma CVD method wiyh a rotary electrod,” Proceedings of the 3rd World Conference on PVSEC, Osaka, Japan, pp. 1552-1555.
    [39] Ide Y., Saito Y., Yamada A., Konagai M., 2003, “Microcrystalline silicon thin film solar cells prepared by the hot wire method,” Proceedings of the 3rd World Conference on PVSEC, Osaka, Japan, pp. 2773-2778.
    [40] Klein S., Finger F., Carius R., Dylla T., Rech B., Grimm M., Houben L., Stutzmann M., 2003, “Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells,” Thin Solid Films, 430, pp. 202-207
    [41] Yan B., Yue G., Yang J., Lord K., Banerjee A., Guha S., 2003, “Microcrystalline silicon solar cells made using RF, MVHF and microwave at various deposition rates,” Proceedings of the 3rd World Conference on PVSEC, Osaka, Japan, pp. 2773-2778.
    [42] Shirai H., Sakuma Y., Yoshino K., Uemaya H., 2001, “Fast deposition of microcrystalline silicon films using the high density microwaves plasma utilizing a spoke wise antenna,” Proceeding of the Materials Research Society Symposium, 609, A.4.4.1-6.
    [43] Roschek T., Repmann T., Müller J., Rech B., Wagner H., 2002, “Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology A, 20, pp. 492-498.
    [44] Niikura C., Kondo M., Matsuda A., 2003, “High rate growth of microcrystalline silicon films assisted by high density plasma,” Proceedings of the 3rd World Conference on PVSEC, Osaka, Japan, pp. 1710-1713.
    [45] Guo L., Kondo M., Fukawa M., Saitoh K., Matsuda A., 1998, “High Rate Deposition of Microcrystalline Silicon Using Conventional Plasma-Enhanced Chemical Vapor Deposition,” Japanese Jourmal of Applied Physics, 37, pp. L1116-L1118.
    [46] Fukawa M., Suzuki S., Guo L., Kondo M., Matsuda A., 2001, “High rate growth of microcrystalline silicon using a high-pressure depletion method with VHF plasma,” Solar Energy Materials and Solar Cells, 66, pp. 217-223
    [47] Kondo M., Fukawa M., Guo L., Matsuda A., 2000, “High rate growth of microcrystalline silicon at low temperatures,” Journal of Non-crystalline solids, 266-269, pp. 84-89
    [48] Moustakas T., Maruska H., Friedman R., 1985, “Properties and photovoltaic applications of microcrystalline silicon films prepared by rf reactive sputtering,” Journal of Applied Physics, 58, pp. 983-983-4.
    [49] Miller D., Lutz H., Weismann H., Rock E., Ghosh A. K., Ramamoorthy S., Strongin M., 1978, “Some properties of evaporated amorphous silicon made with atomic hydrogen,” Journal of Applied Physics, 49, pp.6192-6192-2.
    [50] Malhotra A. K.and Neudeck G. W., 1976, “Effects of hydrogen contamination on the localized states in amorphous silicon,” Applied Physics Letters, 28, pp. 47-47-3.
    [51] Sakamoto Y., 1977, “Experimental Study of Excitation of Low Frequency Plasma Waves by Amplitude-Modulated Microwave,” Japanese Journal of Applied Physics, 16, pp.1015-1024
    [52] Howling A. A., Dorier J. L., Hollenstein C., Kroll U., Finger F., 1992, “Frequency effects in silane plasma for plasma enhanced chemical vapor deposition,” Journal of Vacuum Science and Technology A, 10, pp. 1080-1085.
    [53] Zedlitz R., Heintze M., Bauer G. H.,1992, “Analysis of VHF glow discharge of a-Si:H over a wide frequency range,” Proceedings of the Materials Research Society Symposium, 258, pp. 147-151
    [54] Poortmans J., Arkhipov V., 2006, “Thin film solar cells: fabrication, characterization and applications,” England, Wiley, Chapter 4.
    [55] Heintze M., Zedlitz R., Bauer G. H., 1993, “Analysis of high-rate a-Si:H deposition in a VHF plasma,” Journal of Physics D: Applied Physics, 26, pp. 1781-1786
    [56] Perrin J. and Schmitt J. P. M., 1982, “Emission cross-section from fragments produced by electron impact on silane,” Chemical Physics, 67, pp.167-176.
    [57] Klein S., Finger F., Carius R., Rech B., Houben L., Luysberg M., Stutzmann M., 2002, “High efficiency thin film solar cell with intrinsic microcrystalline silicon prepared by hot wire CVD,” Material Research Society Symposium Proceedings, 715, pp. A26.22.21-26.
    [58] Shirai H.,Ohkawara G., Nakajima M., 2003, “high-density microwave plasma-enhanced chemical vapor deposition of crystalline silicon films for solar cell devices,” Solid State Phenomena, 93, pp. 109-114
    [59] Repmann T., Appenzeller W., Sehrbrock B., Stiebig H., Rech B., 2004, “Advanced PECVD processes for thin film silicon solar cells on glass,” Proceedings of the European Photovoltaic Specialist Conference, Paria, France, pp. 1334-1351.
    [60] Mai Y., Klein S., Carius R., Wolff J., Lambertz A., Figer F., Geng X., 2005, “Microcrystalline silicon solar cells deposited at high rates,” Journal of Applied Physics, 97, pp. 114913.1-114913.12.
    [61] Nakano Y., Goya S., Watanabe T., Yamashita N., Yonekura Y., 2006, High-deposition-rate of microcrystalline silicon solar cell by using VHF PECVD,” Tin Solids Films, 506-507, pp.33-37
    [62] Takatsuda H., Noda M., Yonekura Y., Takeuchi Y., Yamauchi Y., 2004, “Development of high efficiency large area silicon thin film modules using VHF-PECVD,” Solar Energy, 77, pp. 951-960
    [63] Smets A. H. M., Matsui T., Kondo M., 2008, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” Journal of Applied Physics, 104, pp. 034508.1-034508.11.
    [64] Gordijn A., Pollet-Villard A., Finger F., 2011, “At the limit of total silane gas utilization for preparation of high-quality microcrystalline silicon solar cells at high-rate deposition,” Applied Physics Letters, 98, pp. 211501.1-211501.3.
    [65] Mai Y., Klein S., Geng X., Figer F., 2004, “Structure adjustment during high-deposition-rate growth of microcrystalline silicon solar cells,” Applied Physics Letters, 85, pp. 2839 – 2841
    [66] Meier J., Keppner H., Dubail J., Kroll U., Torres P., Pernet P., Ziegler Y., Anna Selvan J. A., Cuperus J., Fischer D., Shah A., 1998, “microcrystalline single junction and micromorph tandem thin film silicon solar cells,” Material Research Society Symposium Proceedings, 507, pp. 139-144.
    [67] Yamamoto K., Nakajima A., Yoshimi M., Sawada T., Fukuda S., Suezaki T., Ichikawa M., Koi Y., Goto M., Meguro T., Matsuda T., Kondo M., Sasaki T., Tawada Y., 2004, “A high efficiency thin-film silicon solar cell and module,” Solar Energy Materials and Solar Cells, 77, pp. 939-949.
    [68] Finger F., Carius R., Dylla T., Klein S., Okur S., Günes M., 2003, “Stability of microcrystalline silicon for thin film solar cell applications,” IEE Proceedings - Circuits, Devices and Systems, 150, pp. 300-308
    [69] Meillaud, F., Vallat-Sauvain, E.; Niquille, X.; Dubey, M.; Bailat, J.; Shah, A.; Ballif, C., 2005, “Light-induced degradation of thin film amorphous and microcrystalline silicon solar cells,” Proceeding of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, USA, pp. 1412-1415
    [70] Yan B., Yue G., Owens J., Yang J., Guha S., 2004, “Light-induced metastability in hydrogenated nanocrystalline silicon solar cells,” Applied Physics Letters, 85, pp. 1925-1927.
    [71] Droz C., Vallat-Sauvain E., Bailat J., Feitknecht L., Meier J., Shah A., 2004, “Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells, ” Solar Energy Materials and Solar Cells, 81, pp.61-71
    [72] Donker M. N., Klein S., Rech B., Finger F., Kessels W. M. M., and Sanden M. C. M., 2007, “Microcrystalline silicon solar cells with an open-circuit voltage above 600 mV ,” Applied Physics Letters, 90, pp.183504-183504-3
    [73] Saiti K., Sano M.,Matzuda K., Kondo T., Higasikawa M., Karyia T., 1999, “High efficiency microcrystalline silicon solar cells by the loe temperature plasma CVD method,” Proceedings of the 11st International PVSEC conference, Sapporo, Japan, pp. 229-230
    [74] Saiti K., Sano M., Sakai A., Hayashi R., Ogawa K., 2001, “High efficiency microcrystalline silicon solar cells deposited at high deposition rates,” Proceedings of the 12st International PVSEC conference, Jeju, Korea, pp. 429.
    [75] Wang X. X., Zhang J. G., Ding L., Cheng B. W., Ge W. K., Yu J. Z., Wang Q. M., 2005, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Physical Review, 72, pp. 195313-195313-6
    [76] Hao H. L., Wu L. K., and Shen W. Z., 2008, “Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films”, Applied Physics Letters, 92, pp. 121922.1-121922.3
    [77] Ossicini S., Iori F., Degoli E., Luppi E., Magri R., Poli R., Cantele G., Trani F., Ninno D., 2006, “Understanding Doping In Silicon Nanostructures ,” IEEE Journal of Selected Topics in Quantum Electronics, 12, pp. 1585-1591.
    [78] Polisski G., Kovalev D., Dollinger G., Sulima T., Koch F., 1999, “Boron in mesoporous Si-Where have all the carriers gone?,” Physica B, 273, pp. 951-954.78.
    [79] Meier J., Dubaila S., Platz R., Torres P., Kroll, Anna Selvan J. A., Pellaton Vaucher N., Hof Ch., Fischer D., Keppner H., Flückigera R., Shah A., Shklover V., Usert K. D., 1997, “Towards high-efficiency thin-film silicon solar cells with the ”micromorph” concept,” Solar Energy Materials and Solar Cells, 49, pp.35-44
    [80] Taguchi M., Tanaka M., Matsuyama T., Matsuoka T., Tsuda S., Nakano S., Kishi Y., Kuwano Y., 1990, “Improvement of the conversion efficiency of polycrystalline silicon thin film solar cell,” Technical Digest of the 5th International Photovoltaic Science and Engineering Conference, pp. 689–692.
    [81] Tsunomura Y., Yoshimine Y., Taguchi M., Baba T., Kinoshita T., Kanno H., Sakata H., Maruyama E., Tanaka M., 2009, “Twenty-two percent efficiency HIT solar cell,” Solar Energy Materials and Solar Cells, 93, pp. 670–673.
    [82] Mukhopadhyay S., Das C., Ray S., 2004, “Structural analysis of undoped microcrystalline silicon thin films deposited by PECVD technique,” Journal of Physics: Applied Physics, 37, pp. 1736−1741.
    [83] Saleh R., Nickel N.H., 2003, “Raman spectroscopy of B-doped microcrystalline silicon films”, Thin Solid Films, 427, pp. 266-269.
    [84] Cheng W., Ren S., 2002, “Calculations on the size effects of Raman intensities of silicon quantum dots,” Phys. Rev. B, 65, pp. 205305-205305-9
    [85] Kondo M., 2003, “Microcrystalline materials and cells deposited by RF glow discharge,” Solar Energy Materials and Solar Cells, 78, pp. 543-566
    [86] Tsai C.C., Anderson G. B., Thompson R., Wacker B., 1989, “Control of silicon network structure in plasma deposition,” Journal of Non-Crystalline Solids, 114, pp. 151-153.
    [87] Iqbal Z., Vepiek S., 1982, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” Journal of Physics C: Solid State Physics, 15, pp. 377-392
    [88] Li Y. M., Li L., Anna Selvan J.A., Delahoy A. E., Levy R. A.,2005, “Effects of seeding methods on the fabrication of microcrystalline silicon solar cells using radio frequency plasma enhanced chemical vapor deposition,” Thin Solid Films, 483, pp. 84-88.
    [89] Fujibayashi T., Kondo M., 2006, “Roles of microcrystalline silicon p layer as seed, window, and doping layers for microcrystalline silicon p-i-n solar cells,” Journal of Applied Physics, 99, pp. 043703-043703-4.
    [90] Agbo S.N., Krcˇ J., Swaaij R.A.C.M.M. van, Zeman M., 2010, “Optimization of the p-i interface properties in thin film microcrystalline silicon solar cell,” Solar Energy Materials & Solar Cells, 94, pp. 1864–1868.
    [91] Goerlitzer M. , Torres P., Beck N., Wyrsch N., Keppner H., Pohl J., Shaha A., 1998, “Structural properties and electronic transport in intrinsic microcrystalline silicon deposited by the VHF-GD technique,” Journal of Non-Crystalline Solids, 227-230, pp. 996-1000
    [92] Werner J.H., Dassow R., Rinke T.J., Köhler J.R., Bergmann R.B., 2001, “From polycrystalline to single crystalline silicon on glass,” Thin Solid Films, 383, pp. 95-100
    [93] Flückiger R., Meier J., Goetz M., Shah A., 1995, “Electrical properties and degradation kinetics of compensated hydrogenated microcrystalline silicon deposited by very high‐frequency‐glow discharge,” Journal of Applied Physics, 77, pp. 712-712-5
    [94] Kamei T., Kondo M., Matsuda A., 1998, “A Significant Reduction of Impurity Contents in Hydrogenated Microcrystalline Silicon Films for Increased Grain Size and Reduced Defect Density,” Japanese Journal of Applied Physics, 37, pp. L265-L268
    [95] Torres P., Meier J., Flückiger R., Kroll U., Anna Selvan J. A., Keppner H., Shah A., Littelwood S. D., Kelly I. E., Giannoulès P., 1996, “Device grade microcrystalline silicon owing to reduced oxygen Contamination,” Applied Physics Letters, 69, pp.1373-1375
    [96] Kshirsagar S.T., Dusane R.O., Bhide V.G., 1989, “Dopant-atom-induced disorder in hydrogenated amorphous silicon: Raman studies,” Physical Review Part B, 40, pp. 8026-8029
    [97] Beeman D., Alben R., 1977, “Vibrational properties of elemental amorphous semiconductor,” Advances in Physics, 26, pp. 339-361
    [98] Saleh R., Nickel N.H., 2007, “The influence of boron concentrations on structural properties in disorder silicon films”, Applied Surface Science, 254, pp.580–58598.Matsui T., Tsukiji M., Saika H., Toyama T., Okamoto H., 2002, “Correlation between Microstructure and Photovoltaic Performance of Polycrystalline Silicon Thin Film Solar Cells,” Japanese Journal of Applied Physics, 41, pp. 20–27.
    [99] Matsui T., Tsukiji M., Saika H., Toyama T., Okamoto H., 2002, “Correlation between Microstructure and Photovoltaic Performance of Polycrystalline Silicon Thin Film Solar Cells,” Japanese Journal of Applied Physics, 41, pp. 20–27.
    [100] Nath M., Cabarrocas P. R., Johnson E.V., Abramov A., Chatterjee P., 2008, “The open-circuit voltage in microcrystalline silicon solar cells of different degrees of crystallinity,” Thin Solid Films, 516, pp. 6974–6978.
    [101] Veprek S., Sarrot F. A., Iqbal Z., 1987, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Physical Review B, 36, pp. 3344-3350
    [102] Tanaka M., Taguchi M., Matsuyama T., Sawada T., Tsuda S., Nakano S., Hanafusa H., Kuwano Y., 1992, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer),” Japanese Journal of Applied Physics 31, pp. 3518-3522.
    [103] He S.S,, Williams M.J., Stephens D.J., Lucovsky G., 1993, “Fabrication and performance of thin film transistors, TFTs, incorporating doped μc-Si source and drain contacts, and boron-compensated μc-Si channel layers”, Journal of Non-Crystalline Solids, 164-166, pp. 731-734
    [104] Finger F., Hapke P., Luysberg, M. Carius R., Wagner H., 1994, “Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge,” Applied Physics Letter, 65, pp. 2588-2590.

    無法下載圖示 校內:2018-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE