| 研究生: |
李俊逸 Lee, Chun-Yi |
|---|---|
| 論文名稱: |
含線剛性異質物之異向性材料Z型分叉之分析 Analysis of Z-branch from a rigid line in an anisotropic material |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 線剛性異質物 、Z型分叉裂紋 、異向性 、應力強度因子 |
| 外文關鍵詞: | rigid line, Z-branch, anisotropic, stress intensity factor |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討一線剛性異質物於二維異向性全平面彈性體內受到無限遠處外力作用下,異質物兩端產生Z型分叉行為,此問題可視為將兩個子問題線性疊加後之結果。子問題一為彈性體內含一異質物受無限遠處外力作用;子問題二為彈性體內含一異質物受兩個未知的差排函數作用,疊加二子問題使其符合邊界條件–分叉裂紋位置之曳引力為零。透過已知的位移函數及應力函數,並利用差排密度函數模擬裂紋,將此問題離散化後轉換成奇異積分方程組,藉由數值積分求解差排函數,進而求得分叉裂紋尖端之應力強度因子,文中對於不同受力狀況、分叉裂紋角度變化以及分叉裂紋長度變化在不同異向性程度下之應力強度因子有詳細的討論。
The behaviours of Z-branch extending from the tip of rigid line inclusion in an anisotropic elastic material are investigated in this thesis. The problem can be analyzed by superposition of two simple problems. One is an elastic material containing a rigid line subjected to far field uniform stress. The other is an elastic material containing a rigid line applied by unknown distributed edge dislocations. The traction-free condition is applied on the positions of two branches. Eshelby-Stroh formalism is used to establish the Cauchy-type singular integral equations. A numerical method is employed to solve these equations. Then unknown distributed edge dislocations and stress intensity factors (SIFs) at the branch tip can be obtained. In this thesis, three kinds of far field stresses are considered: uniform tension, in-plane shear and out-of-plane shear. The influences of degree of anisotropy, angle of Z-branch, and length of Z-branch on the SIE at branch tip are investigated and the results are discussed.
[1] Atkinson, C., “Some ribbon-like inclusion problems,” International Journal of Engineering Science, Vol. 11, No. 2, pp. 243-266 (1973).
[2] Ballarini, R., “An integral equation approach for rigid line inhomogeneity problems,” International Journal of Fracture, Vol. 33, pp. R23-R26 (1987).
[3] Chatterjee, S.N., “The stress field in the neighborhood of a branched crack in an infinite elastic sheet,” International Journal of Solids and Structures, Vol. 11, No. 5, pp. 521-538 (1975).
[4] Eshelby, J. D., Read, W. T., Shockley, W., “Anisotropic elasticity with applications to dislocation theory,” Acta Metallurgica, Vol. 1, No. 3, pp. 251-259 (1953).
[5] Eshelby, J. D., “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society, Series A, Vol. 241, pp. 376-396 (1957).
[6] Eshelby, J. D., “The elastic field outside an ellipsoidal inclusion,” Proceedings of the Royal Society, Series A, Vol. 252, pp. 561-569 (1959).
[7] Gerasoulis, A., “The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type,” Computers & Mathematics with Applications, Vol. 8, No. 1, pp. 15-22 (1982).
[8] Hardiman, N. J., “Elliptical elastic inclusion in an infinite elastic plate,” The Quarterly Journal of Mechanics & Applied Mathematics, Vol. 7, No. 2, pp. 226-230 (1954).
[9] Hasebe, N., Keer, L. M., Nemat-Nasser, S., “Stress analysis of a kinked crack initiating from a rigid line inclusion. Part I: formulation,” Mechanics of Materials, Vol. 3, pp. 131-145 (1984).
[10] Hwu, “Anisotropic elastic plates,” Springer (2010).
[11] Lekhnitskii, S. G., “Theory of elasticity of an anisotropic elastic body,” San Francisco, Holden-Day (1963).
[12] Li, Q., Ting, T. C. T., “Line inclusions in anisotropic elastic solids,” Transactions of ASME, Vol. 56, pp. 556-563 (1989).
[13] Liou, J. Y., Sung, J. C., “Analysis of Z-branch from a pre-existing slipping crack in an anisotropic solid,” Computers & Structures, Vol. 84, pp. 61-69 (2005).
[14] Liou, J. Y., Sung, J. C., “On the equivalence of the Lekhnitskii and Stroh formalisms,” Cross-Strait Workshop on Engineering Mechanics (2008).
[15] Lo, K. K., “Analysis of branched cracks,” Journal of Applied Mechanics, Vol. 45, pp. 797-802 (1978).
[16] Muskhelishvili, N. I., “Some basic problems in the mathematical theory of elasticity,” Noordhoff (1953).
[17] Selvadurai, A. P. S., “The displacements of a flexible inhomogeneity embedded in a transversely isotropic elastic medium,” Fibre Science and Technology, Vol. 14, No. 4, pp. 251-259 (1980).
[18] Sendeckyj, G. P. “Elastic inclusion problems in plane elastostatics,” International Journal of Solids and Structures, Vol. 6, pp. 1535-1543 (1970).
[19] Skrzypek, J. J., Ganczarski, A. W., “Mechanics of anisotropic materials,” Springer (2015).
[20] Stroh, A. N., “Dislocations and cracks in anisotropic elasticity,” Philosophical Magazine, Vol. 3, pp. 625-646 (1958).
[21] Stroh, A. N., “Steady state problems in anisotropic elasticity,” Journal of Mathematical and Physics, Vol. 41, No. 1, pp. 77-103 (1962).
[22] Ting, T. C. T., “Anisotropic elasticity: theory and applications,” Oxford University press (1996).
[23] Ting, T. C. T., “Explicit solution and invariance of the singularities at an interface crack in anisotropic composites,” International Journal of Solids and Structures, Vol. 22, No. 9, pp. 965-983 (1986).
[24] Ting, T. C. T., “Some identities and the structure of in the Stroh formalism of anisotropic elasticity,” Quarterly of Applied Mathematics, Vol. 46, No. 1, pp. 109-120 (1988).
[25] Wang, Z. Y., Zhang, H. T., Chou, Y. T., “Characteristics of the elastic field of rigid line inhomogeneity,” Transactions of ASME, Vol. 52, pp. 818-822 (1985).
[26] Yen, W. J., Hwu, C., “Interactions between dislocations and anisotropic elastic elliptical inclusions,” Transactions of ASME, Vol. 61, pp. 548-554 (1994).
[27] 宋見春、劉鈞耀、黃銘智。線彈性材料中分叉裂紋之應力強度因子。中國土木水利工程學刊,Vol. 5,No. 2,pp. 125-132,(1993)。
[28] 洪崇倫。裂紋與線剛性異質物之互制分析。國立成功大學土木工程研究所,2008。