簡易檢索 / 詳目顯示

研究生: 蘇家穎
Su, Chia-Ying
論文名稱: 光學成像理論應用於準分子雷射微細加工系統之理論與實驗研究
Optical Imaging Theory for Theoretical and Experimental Studies on Excimer Laser Micromachining System
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 132
中文關鍵詞: 準分子雷射加工灰階光罩光學成像理論繞射空間同調
外文關鍵詞: Excimer Laser Micromachining, Optical Diffraction, 3D Micro-machining
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對準分子雷射微細加工系統,進行完整的光學理論分析與實驗驗證,以了解並掌握其加工的重要原理與特性;根據所獲得的理論與實驗結果,本文建立一套“有理論依據且有效率”的半色調網點灰階光罩法,可以利用準分子雷射微細加工技術製作複雜曲面的三維微結構。
    本論文首先分析與模擬準分子雷射微細加工系統的光學設計,探討光罩圖案與成像面上光強分布之間的關係,提出結合光學繞射現象與光 罩圖形設計的加工方式,即半色調網點灰階光罩法,進行複雜3D曲面的微結構加工。經由實際的加工製程與實驗量測,驗證本研究所使用的光學模擬方式與半色調網點灰階光罩法的可行性與正確性。
    在光學成像理論方面,藉由部分空間同調因子的定義,結合幾何光學光束追跡理論與傅氏光學繞射理論,使可以對圖形尺寸在數個雷射光波長以上的光罩進行光學模擬,得到在成像面上的光強分布,進而去探討光罩圖形對雷射加工圖形定義能力的影響。而在半色調網點灰階光罩法方面,使用一般的石英鍍鉻二元光罩,藉由光罩圖形的設計,使雷射投射在加工材料表面上的能量分布呈現三維連續變化,可快速且精確地製作複雜曲面三維微結構,由實驗量測顯示其形貌吻合度高且表面粗糙度佳。
    最後,藉由實驗結果與模擬結果的比對,驗證可以透過本研究所使用的光學模擬方法來推測半色調網點灰階光罩法的理想光罩設計參數。

    This study has carefully and thoroughly examined an excimer laser micromachining system in order to understand its underlying working principle and important characteristics. Based on the investigated results, both theoretical and experimental, a new type of hole-area machining method which incorporates critical optical diffraction effects of the optical projection system is developed and established. Using this new method, 3D micro-structures with complicated profiles can be easily fabricated and the surface roughness is significantly improved.
    First of all, the optical imaging theory is applied on analyzing the excimer laser micromachining system. Attention is emphasized on establishing a quantitative relationship between the mask pattern and the laser intensity projected on the surface of a work piece. The analysis demonstrates the possibility and feasibility of applying the optical diffraction phenomenon on mask pattern design to achieve 3D microstructure laser-machining. Experimentally, several conventional binary photo-masks which have different hole-area pattern designs such as hole diameter, center-to-center pitch, and hole-density are prepared and used for fabricating 3D microstructures on a polycarbonate(PC)substrate. The experiment results are compared with theoretical data. Satisfactory profile accuracy and fine surface roughness are observed.
    To conclude, this work has successfully established a correct and complete modeling of excimer laser micromachining system and a new approach for obtaining 3D micromachining. It provides an effective and reasonable way for designing and preparing the photo-mask with much less restriction on the smallest feature size, and therefore reduces the mask fabrication difficulty as well as the cost. Many applications and benefits can be further explored in the future.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1-1 背景介紹 1 1-2 文獻回顧 3 1-3 研究動機與目標 8 1-4 本文架構 9 第二章 準分子雷射與半色調網點灰階光罩法 10 2-1 準分子雷射加工原理 10 2-2 準分子雷射加工系統 12 2-3 半色調網點灰階光罩法 15 2-4 光罩設計理論 17 第三章 光學預測模式 22 3-1 歪像柱狀望遠鏡系統 26 3-1-1 幾何光學分析 26 3-1-2 Zemax光學模擬 28 3-2 均光鏡系統 33 3-2-1 幾何光學分析 33 3-2-2 Zemax光學模擬 37 3-3 投影成像系統 39 3-3-1 夫琅和費繞射圖樣(Fraunhofer diffraction pattern) 41 3-3-2 投射鏡 43 3-3-3 空間同調(Spatial coherence) 50 3-3-4 庫勒照明系統(Köhler illumination system) 61 3-3-5 利用Zemax光學模擬定義部分空間同調因子 64 3-4 數值方法 66 3-4-1 阿貝空間同調成像計算法的數值化 67 3-4-2 矩陣計算法 67 3-4-3 模擬實例 75 3-5 基本成像性質分析 79 3-5-1 點振幅函數與點擴散函數 79 3-5-2 光罩圖形的尺寸大小對加工面上光強分布的影響 81 3-5-3 光罩圖形分布間距對加工面上光強分布的影響 86 第四章 實驗結果與討論 91 4-1 實驗一:光柵結構 91 4-2 實驗二:六角最密洞狀(六角形)結構 98 4-3 實驗三:孔洞面積法製作三維球面微結構 104 4-4 實驗討論 119 第五章 結論與未來展望 125 5-1 結論 125 5-2 未來展望 126 參考文獻 128

    [1] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique For Monolithic Fabrication of Microlens Arrays,” Appl. Opt., Vol. 27, No.7, pp.1281-1297, 1988.
    [2] S. Lazare, J. Lopez, J. M. Turlet, M. Kufner, S. Kufner, and P. Chavel, “Microlenses Fabricated by Ultraviolet Excimer Laser Irradiation of Poly (methyl methacrylate) Followed by Styrene Diffusion,” Appl. Opt., Vol. 35, No.22, pp.4471-4475, 1996.
    [3] M. Frank, M. Kufner, S. Kufner, and M. Testorf, “Microlenses in Polymethyl Methacrylate With High Relative Aperture,” Appl. Opt., Vol. 30, No.19, pp.2666-2667, 1991.
    [4] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic Technique For Producing Microlenses in Photosensitive Glass,” Appl. Opt., Vol. 24, No.16, pp.2520-2525, 1985.
    [5] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE Photonic Technology Letters, Vol. 6, No.9, pp.1112-1114, 1994.
    [6] Sławomir Ziółkowski, Ines Frese, Henryk Kasprzak and Stefan Kufner, "Contactless embossing of microlenses—a parameter study", Opt. Eng., Vol. 42, pp.1451-1455, 2003.
    [7] W. P. Long, and R. Stein, “General Aspheric Refractive Micro-Optics Fabricated by Optical Lithography Using a High Energy Beam Sensitive Glass Gray-Level Mask,” J. Vac. Sci. Technol. B., Vol. 14, pp.3730-3733, 1996.
    [8] Michael R.Wang and Heng Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl.Opt., Vol.37, No.32, 1998.
    [9] Chung-Hao Tien, Yeh-En Chien, Yi Chiu and Han-Ping D. Shieh, “Microlens Array Fabricated by Excimer Laser Micromachining with Gray-tone Photolithography,” Jpn. J. Appl. Phys., Vol. 42, pp.1280-1283, 2003.
    [10] 灰階光罩於微型光學元件之應用, 交通大學顯示系統實驗室.
    [11] K. Zimmer, D. Hirsch, F. Bigl, “Excimer Laser Machining for the Fabrication of Analogous Microstructures,” Appl. Surf., Vol. 96-98, pp.425-429, 1996.
    [12] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct Writing of Microlenses In Polycarbonate With Excimer Laser Ablation,” Appl. Opt., Vol. 42, No.31, pp.6349-6359, 2003.
    [13] K. Naessens, H. Ottevaere, P. V. Daele, R. Baets, “Flexible Fabrication of Microlenses In Polymer Layers With Excimer Laser Ablation,” Appl. Surf., Vol. 208-209, pp.159-164, 2003.
    [14] T. Masuzawa, J. O. Benneker, J. J. C. Eindhoven, “A New Metod for Three Dimensional Excimer Laser Micromachining, Hole Area Modulation (HAM),” Annals of the CIRP, Vol. 49, pp.139-142, 2000.
    [15] K. H. Choi, J. Meijer, T. Masuzawa, D. H. Kim, “Excimer laser micromachining for 3D microstructure,” Journal of Materials Processing Technology, Vol. 149, pp.561-566, 2004.
    [16] N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam,” J. of Experimental and Theoretical Physic Letters, Vol. 12, pp.329, 1970.
    [17] S. Searles, G. Hart, “Stimulated emission at 281.8nm from XeBr,” Applied Physics Letters, Vol. 27, pp.243, 1975.
    [18] 國科會精密儀器發展中心, 微機電系統技術與應用, 全華科技圖書公司, 台北, 民國92年.
    [19] J. Brannon, Excimer Laser Ablation and Etching, Education Committee, American Vacuum Society, 1993.
    [20] A. A. Tseng, Y. T. Chen, K. J. Ma, “Fabrication of high-aspect-ratio microstructures using excimer laser,” Optics and Lasers in Engineering, Vol. 41, pp.827-847, 2004.
    [21] 陳品璋, 李永春, 準分子雷射直寫技術應用於具微米特徵之無接縫滾筒膜仁, 國立成功大學微機電系統工程研究所碩士論文, 民國96年.
    [22] http://www.zemax.com/kb/articles/91/1/Fly's-Eye-Arrays-for-Uniform-Illumination-in-Digital-Projector-Optics.
    [23] K. A. Valiev, L. V. Velikov, G. S. Volkov, D. Yu. Zaroslov, “The coherence factors of excimer laser radiation in projection lithography,” Journal of Vacuum Science & Technology B, Vol. 7, pp.1616-1619, 2009.
    [24] Joseph W. Goodman, Introduction to Fourier Optics Third Edition, Roberts & Co, 2004.
    [25] Chris Mack, Fundamental Principles of Optical Lithography:The Science of Microfabrication, John Wiley & Sons Inc, 2008.
    [26] E. Hecht, Optics Fourth Edition, Addison-Wesley, 2002.
    [27] F. L. Pedrotti, Introduction to Optics Third Edition, Prentice Hall, 2007.
    [28] T. Terasawa, "Subwavelength lithography (PSM, OPC)," Design Automation Conference, 2000. Proceedings of the ASP-DAC 2000. Asia and South Pacific, pp.295-300, 2000.
    [29] H. H. Hopkins, “On the diffraction theory of optical image,” Proc. R. Soc. London, Ser. A, Vol. 217, No. 1130, pp.408-432, 1953.
    [30] R. J. Socha, “Propagation effects of partially coherent light in optical lithography and inspection,” Journal of Vacuum Science & Technology B, Vol. 14, pp.3724-3729, 2009.
    [31] N. B. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit manufacturing,” Ph.D. dissertation, Electrical Engineering and Computer Science, University of California, Berkeley, 1998.
    [32] William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, Numerical Recipes in C Second Edition, Cambridge University Press, 1993
    [33] Kenji Yamazoe, "Computation theory of partially coherent imaging by stacked pupil shift matrix," J. Opt. Soc. Am. A, Vol. 25, pp.3111-3119, 2008.
    [34] Kenji Yamazoe, "Fast fine-pixel aerial image calculation in partially coherent imaging by matrix representation of modified Hopkins equation," Appl. Opt., Vol. 49, pp.3909-3915, 2010.
    [35] Kenji Yamazoe, "Two matrix approaches for aerial image formation obtained by extending and modifying the transmission cross coefficients," J. Opt. Soc. Am. A, Vol. 27, pp.1311-1321, 2010.

    無法下載圖示 校內:2016-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE